admin

Categorías

Coobis

Óptica

Logran parar la luz durante un minuto

Actualidad Informática. Logran parar la luz durante un minuto. Rafael Barzanallana. UMU

Logran que un haz de energía que se mueve a casi 300000 kilómetros por segundo se detenga durante un minuto, para después proseguir su camino. El descubrimiento, aparte de hacernos soñar con sables de luz, abre las puertas a la internet cuántica, una red futura 100% segura e increíblemente rápida.

No es la primera vez que logran detener el avance de la luz. En 1999 consiguieron ralentizar su avance hasta sólo 17 metros por segundo. Hace sólo dos años lograron detenerla por primera vez, pero sólo durante una fracción de segundo. El logro de congelarla durante un minuto ha sido alcanzado por investigadores de la Universidad de Darmstadt, en Alemania.

Para parar la luz, lo primero que ha hecho el equipo de Darmstad es disparar un láser sobre un cristal opaco. Al recibir el impacto, los átomos del cristal entran en un estado de superposición cuántica que vuelve al material transparente a unas determinadas frecuencias. Un segundo láser ajustado en esas frecuencias es disparado al interior del cristal. En ese punto, los investigadores de Darmstadt diseñaron un algoritmo que equilibra campos magnéticos con la superposición creada por el láser para retener el segundo haz de luz hasta un minuto.

El hecho de que hayan logrado retener la luz significa que pueden utilizar este haz para guardar datos. Esta era la pieza que faltaba para crear un dispositivo hasta ahora teórico llamado Repetidor Cuántico. Este dispositivo serviría para conectar sistemas de memoria cuántica a largas distancias, y es un ingrediente fundamental de la internet cuántica.

Fuente: Physical Review Letters

Es posible grabar 1000 terabytes en un DVD

Actualidad Informática. Es posible grabar 1000 terabytes en un DVD. Rafael Barzanallana. UMU

En Nature Communications  , muestran cómo se desarrolló una nueva técnica para que la capacidad de datos de un DVD aumente de 4,7 gigabytes hasta un petabyte (1000 terabytes). Esto es el equivalente de 10,6 años de comprimido de vídeo de alta definición o 50000 películas completas de alta definición.

La operación de almacenamiento óptico de datos es bastante simple. Cuando se graba un CD, por ejemplo, la información se transforma en cadenas de dígitos binarios (0 y 1, también llamados bits). Cada bit es grabado con un láser de «quemado» en el disco, utilizando un único haz de luz, en forma de puntos.

La capacidad de almacenamiento de los discos ópticos está limitada principalmente por las dimensiones físicas de los puntos. Pero como hay un límite para el tamaño del disco, así como el tamaño de los puntos, muchos métodos actuales de almacenamiento de datos, tales como los DVD y discos Blu-ray, siguen teniendo una densidad de almacenamiento de bajo nivel.

Para evitar esto, han tenido que mirar a las leyes fundamentales de la luz.

Circunnavegando límite de Abbe

En 1873, el físico alemán Ernst Abbe publicó una ley que limita el ancho de haces de luz. Sobre la base de esta ley, el diámetro de un punto de luz, que se obtiene al enfocar un haz de luz a través de una lente, no puede ser inferior a la mitad de su longitud de onda – alrededor de 500 nanómetros (a sólo 500 000 millonésimas de metro) de la luz visible.

Y si bien esta ley juega un papel muy importante en la microscopía óptica moderna, sino que también crea una barrera para todos los esfuerzos de los investigadores para producir  puntos sumamente pequeños – en la región del nanómetro – para utilizar como bits binarios.

En el estudio, muestran cómo romper este límite fundamental mediante el uso de un método de dos haces de luz, con diferentes colores, para la grabación en discos en lugar del método de luz convencional de uno solo.

Ambas luces deben cumplir con la ley de Abbe, por lo que no pueden producir puntos más pequeños de forma individual. Pero  se dan a los dos haces diferentes funciones:

  • El primer haz (rojo) tiene una forma redonda, y se utiliza para activar la grabación. Lo llamamos el haz de escritura
  • El segundo haz de – la forma de rosquilla púrpura – desempeña una función anti-grabación, la inhibición de la función del haz de escritura

Los dos haces se superponen a continuación. A medida que el segundo haz de cancelado a cabo la primera en su anillo de rosquilla, el proceso de grabación es fuertemente confinado en el centro del haz de escritura.

Esta nueva técnica produce un punto focal efectiva de nueve nanómetros – o diezmilésima el diámetro de un cabello humano.

Fuente: THE CONVERSATION

Lograr algo a partir de la nada, partículas virtuales

Efecto CasimirEfecto Casimir

Artículo publicado por Charles Q. Choi el 12 de febrero de 2013 en Scientific American

Las “partículas virtuales” pueden convertirse en fotones reales – bajo las condiciones adecuadas.

El vacío podría parecer espacio sin nada, pero los científicos han descubierto una nueva forma de, aparentemente, lograr algo, como la luz, a partir de la nada. Y el hallazgo podría, finalmente, ayudar a los científicos a construir computadores cuánticos increíblemente potentes, o arrojar luz sobre los primeros momentos de la historia del universo.

La física cuántica explica que existen límites a la precisión con la que se pueden conocer las propiedades de las unidades más básicas de la materia – por ejemplo, no se puede conocer, simultáneamente, con certeza la posición de una partícula y su momento. Una extraña consecuencia de esta incertidumbre es que el vacío nunca está completamente vacío, sino que bulle con lo que se conoce como “partículas virtuales”, que aparecen y desaparecen constantemente.

Estas partículas virtuales aparecen a menudo en parejas que, casi instantáneamente, se aniquilan entre sí. Aun así, antes de desvanecerse, pueden tener efectos muy reales sobre sus alrededores. Por ejemplo, los fotones – paquetes de luz – pueden aparecer y desaparecer en un vacío. Cuando se colocan dos espejos uno frente a otro en un vacío, hay más fotones virtuales fuera de los espejos que entre ellos, lo que genera una aparentemente misteriosa fuerza que empuja los espejos uno contra el otro.

Este fenómeno, predicho en 1948 por el físico holandés Hendrick Casimir, y conocido como efecto Casimir, se observó por primera vez con espejos fijos. Los investigadores también predijeron un efecto Casimir dinámico, que aparece cuando se mueven los espejos, o los objetos sufren cambios, Ahora, el físico Pasi Lähteenmäki y sus colegas, de la Universidad de Aalto en Finlandia, revelan que, al variar la velocidad a la que puede viajar la luz, pueden hacer que aparezca luz en la nada.

La velocidad de la luz en el vacío es una constante, de acuerdo con la teoría de la relatividad de Einstein, pero su velocidad cuando atraviesa un material depende de una propiedad del mismo, conocida como índice de refracción. Variando el índice de refracción del material, los investigadores pueden influir en la velocidad a la que viajan dentro del mismo tanto fotones reales como virtuales. Lähteenmäki dice que puede verse este sistema como un espejo, y si su grosor cambia lo bastante rápidamente, los fotones virtuales que se reflejan puede recibir suficiente energía del rebote como para transformarse en fotones reales. “Imagina que te encuentras en una sala muy oscura y, de pronto, el índice de refracción [de la sala] cambia”, explica Lähteenmäki. “La sala empezaría a brillar”.

Los investigadores empezaron con un conjunto de 250 dispositivos superconductores de interferencia cuántica, o SQUIDs—circuitos que tienen una sensibilidad extraordinaria a los campos magnéticos. Colocaron el conjunto dentro de un refrigerador. Aplicando cuidadosamente campos magnéticos a este conjunto, pudieron variar la velocidad a la que viajaban los fotones de microondas a través del mismo en unos puntos porcentuales. Los investigadores enfriaron luego este conjunto hasta 50 milésimas de grado Celsius por encima del cero absoluto. Debido a que este entorno es superfrío, no debería emitir radiación, comportándose, básicamente, como un vacío. “Simplemente estudiamos estos circuitos con el propósito de desarrollar un amplificador, algo que logramos”, dice el investigador Sorin Paraoanu, físico teórico en la Universidad de Aalto. “Pero entonces nos preguntamos, ¿qué pasa si no hay señal a amplificar? ¿Qué pasa si el vacío es la señal?”.

Los investigadores detectaron fotones que encajaban con las predicciones de un efecto Casimir dinámico. Por ejemplo, tales fotones deberían mostrar la extraña propiedad del entrelazamiento cuántico — es decir, que al medir las propiedades de uno, los científicos podrían, en principio, conocer exactamente cómo es su homólogo, sin importar en qué punto del universo esté, un fenómeno al que Einstein se refería como “acción fantasmal a distancia”. Los científicos detallan sus hallazgos en la edición en línea del 11 de febrero de la revista Proceedings of the National Academy of Sciences.

Esta investigación podría ayudar a los científicos a aprender más sobre los misterios del entrelazamiento cuántico, que es clave para los computadores cuánticos – máquinas avanzadas que podrían, en principio, realizar más cálculos en un instante que átomos hay en el universo. Los fotones de microondas entrelazados generados por en conjunto experimental “pueden usarse para una forma de computación conocida como procesado de información cuántica de ‘variable continua’”.

Fuente: Ciencia Kanija

Juan Ignacio Cirac y Peter Zoller ganan el Premio Wolf de Física 2013

Actualidad Informática. Juan Ignacio Cirac y Peter Zoller ganan el Premio Wolf de Física 2013. Rafael Barzanallana. UMU

El Premio Wolf, para muchos, es la antesala al Premio Nobel. Juan Ignacio Cirac (Max Planck Institute for Quantum Optics, Munich, Germany) y Peter Zoller (Innsbruck University, Austria) han ganado el Premio Wolf en Física de 2013 por sus “revolucionarias contribuciones teóricas al procesado de información cuántica, la óptica cuántica y la física de gases cuánticos.” Cada uno de los premiados recibirá 50000 dólares cuando el premio sea presentado en el Parlamento de Israel en Mayo. Las contribuciones de Cirac y Zoller en el campo de la información cuántica y en el desarrollo de ordenadores cuánticos basados en iones atrapados son muy conocidas.

Fuente: Michael Banks, “Quantum pioneers bag Wolf prize,”PhysicsWorld.com, Jan 3, 2013.

IBM ha desarrollado los primeros circuitos nanofotónicos económicos

Actualidad Informática. IBM ha desarrollado los primeros circuitos  nanofotónicos económicos. Rafael Barzanallana. UMU

Durante más de medio siglo, el electrón reina en el transporte de datos en los sistemas informáticos. En el futuro, el fotón podría ser el centro de atención. En efecto, la luz , con su alta frecuencia permite velocidades mayores,  no genera interferencia magnética, no  desprende calor y  requiere un bajo consumo de energía. Trabajando en conjunto con procesadores rápidos, los circuitos ópticos clásicos podrían transportar datos a velocidades extraordinarias y revolucionar la informática.

Pero si el concepto de enlaces fotónicos es de finales de la década de 1960, la tecnología ha permanecido hasta ahora en prototipo, demasiado grandes o demasiado caros para ser desplegados  industrialmente.

Los laboratorios de IBM tal vez encontraron una solución. Big Blue ha  presentdo una «revolución tecnológica»  en IEEE Electron Devices Meeting Internacional de San Francisco (Estados Unidos). Para lograr este circuito de interfaz de la óptica y electrónica, IBM utiliza sólo los procesos de producción estándar de semiconductores con un grabado fino de 90 nm. El circuito no es mucho más complicada de fabricar que los semiconductores estándar.

Con este montaje, un transceptor único puede desarrollar flujos multiplexados  a 25 Gb / s (aproximadamente 3 GB / s) en los cuatro canales. La ventaja: además de transmitir la señal a alto flujo, no hay necesidad de convertirla en electricidad. Un activo importante para la infraestructura de los centros de datos en los servidores  que tienen que pasar los datos a largas distancias.

En un comunicado, IBM dijo que gracias al grabado fino de silicio, es posible tener un módulo de 5 mm x 5 mm con 50 transceptores. Por lo tanto, el ancho de banda puede alcanzar 1,2 Tb / s o 150 Gb / s. El hecho de utilizar un proceso industrial convencional para el diseño de este transceptor es lo más avanzado. Esto demuestra que la tecnología podría utilizarse en la práctica para ser desplegado en grandes cantidades a bajo costo. Podemos encontrar este tipo de tecnología en el equipamiento del centro de datos y ordenadores personales en los próximos años.

Verifica la teoría atómica y la mecánica cuántica ¡con un CD usado!

Si tienes una caja de cartón, un disco CD viejo que no te importe romper y un cutter, prepárate para hacer un experimento en el que vas a aprender un montón de física cuántica. Prometo no usar ni una fórmula, así que espero que disfrutes el artículo aunque odies las mates.

Hace poco más de un siglo que sabemos con  certeza que las distintas sustancias que se encuentran en la Naturaleza se pueden partir una y otra vez manteniendo sus propiedades, pero no hasta el infinito: el límite es lo que llamamos átomos, del griego  («in-divisible»).

Seguramente en la escuela te explicaron que los átomos consisten en un núcleo, compuesto de partículas llamadas protones y neutrones (de cargas positiva y neutra) y una nube de electrones de carga negativa orbitando a su alrededor

Un átomo es algo muchísimo más complejo y entretenido, y una de las razones es el tamaño de las partículas que lo componen. Los electrones son tan «pequeños» y ligeros (pesan unas 1800 veces menos que las partículas del núcleo atómico) que viven en el mundo microscópico donde las leyes de la Naturaleza son muy diferente a las que vemos en nuestro día a día: las de la mecánica cuántica.

Para empezar, un electrón no es una «bolita», como se lo suele representar. Se descartó hace mucho tiempo que pudieran ser esferas tras analizar un efecto llamado spin. De hecho, a día de hoy no se sabe qué son por dentro (si es que son algo).

El objetivo del experimento es ser capaces de ver dicho espectro para detectar las líneas espectrales de las lámparas que se tengan en casa. En un laboratorio profesional se usaría una red de difracción, básicamente una superficie fina con un patrón regular de agujeros microscópicos:

La distancia entre agujeros debe ser del orden de magnitud de la luz que se quiere analizar y lo que se consigue es separar la luz en sus distintos colores de una forma mucho más eficiente a como lo haría un prisma. Para detectar la separación habrá que mirar el patrón desde un ángulo que coincida con los puntos señalados como «m=1» en el dibujo.

Como es raro que alguien tenga un patrón de difracción de laboratorio en su casa, vamos a usar algo mucho más artesanal: un CD. Incluso un CD-R (de los grabados en casa) vale, ya que aunque esté vacío vienen con una serie de surcos de ~500nm de ancho ya pregrabados.

Al no ser agujeros sino surcos la difracción no será perfecta sino que dependerá del ángulo con el que se mire… ¡pero esto es un experimento casero, así que nos conformamos!

Lo primero que hay que hacer es quitarle la cubierta que lleve pegada en uno de sus lados. Esto debe hacerse con un cutter y con mucho cuidado para no rayarlo. Recomiendo cortar un trozo sin preocuparse y a partir de ahí ir levantándolo muy lentamente introduciendo el cutter por debajo:

 

Tras separar la cubierta de un trozo, procedemos a cortarlo con unas tijeras:

Y a continuación buscamos una caja de cartón y haremos una pequeña ranura en uno de los extremos, y colocaremos el trozo de CD sin cobertura de forma que haga un cierto ángulo con un rayo de luz que entre en la caja, tal que así:

El último paso recomendable es cerrar la caja con su tapa y abrir una pequeña ventana por la que poder ver el trozo de CD desde arriba. Deberás probar para averiguar el ángulo de refracción correcto. También hay otras posibles configuraciones (con el CD paralelo a la abertura y el visor en la otra punta, etc…): prueba y descubre la que te parezca más cómoda.

Tras todo esto, ya podemos iluminar la caja a través de la ranura con el tipo de luz a analizar y podremos ver su espectro a través de la ventana. Primero os muestro lo que se ve con una lámpara incandescente (¡¡perdón por la calidad de esta imagen!!):

Como era de esperar, se ve un espectro continuo, lo que corresponde al tipo de emisión térmico.

Pero si ahora enfocamos una lámpara fluorescente hacia nuestro rudimentario analizador, veremos esta preciosa imagen:

Cada una de esas líneas representa los saltos discretos de los electrones de la cubierta del tubo fluorescente. Compáralos con los espectros de bombillas de distintas marcas que mostré arriba y verás como son idénticos.

Experimento completo en: Ciencia explicada

Bajo  licencia Creative Commons

Un millón de DVDs de datos se podrán almacenar en una cinta óptica multicapa de 100 metros

La capacidad de almacenamiento de datos de los CDs y DVDs está limitada por su tamaño. Se ha publicado en Advanced Materials un nuevo método de fabricación a bajo coste de largas cintas de material óptico multicapa que permite almacenar datos en forma de imágenes; se estima que un carrete de cinta con una longitud de 100 metros podrá almacenar un petabyte de datos (el equivalente a un millón de DVDs). Kenneth Singer (Case Western Reserve University, Cleveland, Ohio) y sus colegas han desarrollado un método capaz de fabricar cintas de polímeros multicapa con hasta 23 capas y 78 micras de espesor en las que se pueden escribir datos con la tecnología Blu-Ray en forma de imágenes como las que muestra el vídeo de youtube de abajo (cada imagen tiene 22 ?m cuadrados y contiene 512 píxeles). El artículo técnico es Chris Ryan et al., “Roll-to-Roll Fabrication of Multilayer Films for High Capacity Optical Data Storage,” Advanced Materials, Article first published online: 13 JUL 2012.

Optochip de IBM transfiere un trillón de bit de información por segundo

Actualidad Informátcia.  Optochip IBM. Rafael Barzanallana Los avances en las comunicaciones ópticas están siendo impulsados por una explosión de nuevas aplicaciones y servicios, así  como la cantidad de datos que se crean y se transmiten a través de las redes corporativas y por los consumidores, siguen  aumentando. Un terabit por segundo, el más reciente avance de IBM en tecnología de chips ópticos, proporciona cantidades sin precedentes de ancho de banda que podría algún día transportar grandes cargas de datos tales como mensajes a sitios de medios sociales, fotos digitales y videos publicados en línea, sensores utilizados para recopilar información sobre el clima, y  transacciones registros de las compras en línea.»Llegar a un trillón de bit  por  segundo marca  el último hito de Holey Optochip, la marca de IBM para desarrollar chips transceptores que pueden manejar el volumen de tráfico en la época de los datos importantes», dijo el investigador de IBM Clint Schow, parte del equipo que construyó el prototipo. «Hemos estado trabajando activamente en mayores niveles de integración, la eficiencia energética y el rendimiento de todos los componentes ópticos a través de los empaquetados y las innovaciones del circuito. Nuestro objetivo es mejorar la tecnología para su comercialización en la próxima década, con la colaboración de socios de fabricación «.Las redes ópticas ofrecen el potencial de mejorar significativamente las tasas de transferencia de datos acelerando el flujo de datos usando pulsos de luz, en lugar de enviar electrones sobre cables. Debido a esto, los investigadores han estado buscando maneras de hacer uso de señales ópticas dentro de estándares de bajo costo y alto volumen de las técnicas de fabricación de chips para uso generalizado.

El uso de un nuevo enfoque, los científicos en los laboratorios de IBM desarrollaron el Optochip Holey con la fabricación de 48 cavidades a través de un chip de silicio CMOS estándar. Las cavidades permiten el acceso óptico a través de la parte posterior del chip a 24  canales receptores y 24 transmisores  para producir un diseño ultracompacto, módulo óptico de alto rendimiento y de bajo consumo capaz de las elevadas tasas de registro de transferencia de datos.

La compacidad y capacidad de comunicación óptica se han convertido en indispensables en el diseño de grandes sistemas de manejo de datos. Con esto en mente, el módulo Holey Optochip está construido con componentes que están disponibles en el mercado hoy en día, ofreciendo la posibilidad de fabricarlos con las economías de escala.

En consonancia con las iniciativas de computación verde, el Optochip Holey logra récord de velocidad con una eficiencia energética (la cantidad de potencia necesaria para transmitir un bit de información) que está entre los mejores que se haya reportado. El transceptor consume menos de cinco vatios, la potencia consumida por una bombilla de 100 W podría alimentar 20 transceptores. Este progreso en las interconexiones de energía eficiente es necesario para permitir a las empresas que adoptan computación de alto rendimiento para manejar su carga de energía en el desempeño de aplicaciones de gran alcance, tales como análisis, modelado de datos y las previsiones.

Al demostrar los niveles sin precedentes de rendimiento, el Optochip Holey pone de manifiesto que la alta velocidad y bajo consumo de energía en las interconexiones son factibles a corto plazo y la óptica es el medio de transmisión único que puede mantenerse a la vanguardia de la demanda de aceleración mundial de la banda ancha. El futuro de la computación se basan en gran medida en la tecnología de chip óptico para facilitar el crecimiento de grandes datos y computación en la nube y el impulso de aplicaciones de próxima generación de centros de datos.

Eventos que se ocultan en el tiempo

Durante años, los físicos han estado refinando capas de invisibilidad física,  configuraciones que inteligentemente desvian la luz alrededor de una región del espacio, ocultando efectivamente cualquier objeto que pueda estar en el interior. Pero ahora investigadores de la Universidad de Cornell han creado la primera capa temporal, un dispositivo que oculta un objeto o un evento no en un punto particular en el espacio, sino en un momento específico en el tiempo.

En una demostración preliminar, el investigador postdoctoral Moti Fridman y sus colegas  de Cornell lanzaron un rayo láser a través de un aparato experimental con un detector. Un objeto físico u otro haz de luz en el camino del rayo láser podría generar un cambio en la luz del láser que el detector registre. Sin embargo, con unas ópticas inteligentes, Fridman y sus colegas fueron capaces de abrir un espacio de tiempo breve en la trayectoria como si el rayo se hubiera ido sin tocar, y de tal manera que el detector no  registró la interrupción. La brecha permite a cualquier cosa, que de otro modo habría afectado a la viga, se deslice  a su través de [ver animación de abajo], sin dejar rastro para ser recogido por el detector.

Los investigadores usaron el manto para ocultar un pulso óptico que normalmente interactúa con el rayo láser para producir un aumento revelador en una determinada longitud de onda. Cuando el caso fue encubierto, sin embargo, el indicador de repunte era básicamente imperceptible.

El manto, se describe en cinco de enero en la revista Nature , se basa en el hecho de que la luz de diferentes colores se mueve a diferentes velocidades a través de algunos medios de comunicación. Usando un dispositivo que ellos llaman una «lente de tiempo», los investigadores dividieron un rayo láser de un solo color en un margen de longitudes de onda, luego se ralentizó la mitad de esas longitudes de onda, mientras que se producía la aceleración de las demás. Se creó un espacio de tiempo muy breve que puede volver a cerrarse antes de que el haz alcance el detector, lográndose la restauración del haz, aparentemente sin ser perturbada la onda.

Animación por Rose Eveleth

Fuente: Scientific American

Desarrollan cristales de memoria de 50 GB de capacidad

Las técnicas de almacenamiento mediante memorias holográficas con las que grabar datos en piezas de cristal llevan años investigándose en distintos proyectos de todo el mundo, y han cobrado un nuevo impulso gracias a un avance alcanzado por la Universidad de Southampton (Reino Unido).

Científicos de esta universidad han desarrollado un método para convertir un cristal del tamaño de una pantalla de teléfono móvil celular en un sistema de almacenamiento de hasta 50GB de capacidad y cuyos datos pueden leerse, reescribirse o borrarse.

El sistema utiliza radiación láser para reordenar la estructura molecular del cristal formando pequeños puntos de información denominados voxeles, que pueden ser leídos mediante otro láser. El proceso,  aumenta la opacidad del cristal y lo polariza.

Según Martynas Beresna, directora del proyecto, los cristales de memoria obtenidos mediante este procedimiento no se ven afectados por las altas temperaturas (resisten hasta casi 1000 grados). Además, pueden conservarse durante miles de años sin perder  información.

Los resultados del estudio (Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass) han sido publicados en la revista Applied Physics Letters, y el equipo de Beresna está trabajando con la compañía lituana Altechna para crear una versión comercial del invento.

Nota de prensa: New nanostructured glass for imaging and recording

Related Posts with Thumbnails

Calendario

abril 2024
L M X J V S D
« Nov    
1234567
891011121314
15161718192021
22232425262728
2930  

Spam

Otros enlaces

  • Enlaces

    Este blog no tiene ninguna relación con ellos, ni los recomienda.


  • Paperblog

    autobus las palmas aeropuerto cetona de frambuesa