admin

Categorías

Coobis

Instituto Max Planck

Desayuno CEDE Ignacio Cirac, director del Instituto Max Planck de Óptica Cuántica

Lograr almacenar en un solo átomo información cuántica

Actualidad informática. Almacenar información cuántica en un solo átomo. Rafael Barzanallana

Una memoria de datos difícilmente puede ser más pequeña: los investigadores que trabajan con Gerhard Rempe en el Instituto Max Planck de Óptica Cuántica en Garching  (Alemania) han almacenado información cuántica en un solo átomo. Los investigadores escribieron el estado cuántico de los fotones individuales, es decir, partículas de luz, en un átomo de rubidio para leerlo de nuevo después de un tiempo. Esta técnica puede ser utilizada, en principio, para el diseño de potentes ordenadores cuánticos y  redes de unos con otros a través de grandes distancias.

Los ordenadores cuánticos algún día serán capaces de hacer frente a tareas de cómputo en casos en los que las computadoras actuales tardarían años. Ttomarán su enorme potencia de cálculo de su capacidad de procesar simultáneamente las diversas piezas de información que se almacenan en el estado cuántico de los sistemas físicos microscópicos, como átomos y fotones. Con el fin de ser capaces de operar, las computadoras cuánticas deben intercambiar estas piezas de información entre sus componentes individuales. Los fotones son especialmente adecuados para ello, y no importa lo que hay que llevar con ellos. Las partículas de la materia sin embargo se utilizarán para el almacenamiento y procesamiento de información. Los investigadores están buscando métodos, por los que se pueda intercambiar información cuántica entre fotones y materia. Aunque esto ya se ha hecho con conjuntos de muchos miles de átomos, los físicos del Instituto Max Planck de Óptica Cuántica en Garching han demostrado que la información cuántica también se puede intercambiar entre átomos y fotones de una forma controlada.

El uso de un solo átomo como  unidad de almacenamiento tiene varias ventajas – la miniaturización extrema de ser una sola, dice Holger Specht del Instituto Max Planck, quien estuvo involucrado en el experimento. La información almacenada puede ser procesada mediante la manipulación directa en el átomo, lo cual es importante para la ejecución de operaciones lógicas en una computadora cuántica. «Además, ofrece la oportunidad de comprobar si la información cuántica almacenada en el fotón se ha escrito correctamente en el átomo sin destruir el estado cuántico», dice Specht. Por lo tanto, es posible determinar en una fase temprana si un proceso de cálculo debe repetirse debido a un error de almacenamiento.

El hecho de que nadie había logrado hasta hace muy poco en el intercambio de información cuántica de fotones y átomos individuales se debe a que la interacción entre las partículas de la luz y los átomos es muy débil. Átomo y el fotón no se dan cuenta mucho el uno del otro, por así decirlo, como dos invitados a una fiesta que apenas hablan entre sí, y por lo tanto pueden intercambiar sólo un poco de información. Los investigadores en Garching han mejorado la interacción con un truco. Colocaron un átomo de rubidio entre los espejos de un resonador óptico, y luego utilizaron pulsos láser muy débiles para introducir fotones individuales en el resonador. Los espejos del resonador reflejan los fotones y varias veces aquí para allá, lo que mejora fuertemente la interacción entre fotones y átomos. Hablando en sentido figurado, los invitados por lo tanto cumplirán con más frecuencia y la posibilidad de que hablen entre si se incrementa.

Los fotones llevan la información cuántica en la forma de su polarización. Esta puede ser zurda (la dirección de la rotación del campo eléctrico es a la izquierda) o diestra (sentido horario). El estado cuántico del fotón puede contener ambas polarizaciones simultáneamente como un estado de superposición. En la interacción con los fotones, el átomo de rubidio suele ser excitado y luego pierde la excitación de nuevo por medio de la emisión probabilística de un fotón más. Los investigadores no querían que esto sucediera. Por el contrario, la absorción de los fotones fue para que el átomo de rubidio permaneciera en un estado cuántico definido, estable. Los investigadores lo lograron gracias a la ayuda de otro haz láser, el denominado láser de control, que se dirige sobre el átomo de rubidio en el mismo tiempo que interactúa con el fotón.

La orientación del espín del átomo contribuye decisivamente al estado cuántico estable generado por láser de control y el fotón. El espin da al átomo  un momento magnético. El estado cuántico estable, el que los investigadores utilizan para el almacenamiento, por lo tanto está determinado por la orientación del momento magnético. El estado se caracteriza por el hecho de que refleja el estado de polarización del fotón: la dirección del momento magnético corresponde a la dirección de rotación de la polarización del fotón, una mezcla de ambas direcciones de rotación sn almacenada por una mezcla correspondiente de los momentos magnéticos.

Este estado es leído por el proceso inverso: la irradiación del átomo de rubidio con el láser de control de nuevo hace que se vuelva a emitir el fotón, que fue originalmente incidente. En la gran mayoría de los casos, la información cuántica de los fotones de lectura está de acuerdo con la información almacenada originalmente, como los físicos descubrieron en Garching. La cantidad que describe esta relación, la fidelidad, fue más del 90 por ciento. Esto es significativamente mayor que la fidelidad del 67 por ciento que se puede lograr con los métodos clásicos, es decir, aquellos que no se basan en efectos cuánticos. El método desarrollado en Garching, por lo tanto, es una memoria cuántica real.

Los físicos midieron el tiempo de almacenamiento, es decir, el tiempo que la información cuántica en el rubidio se puede conservar,  resultó ser de alrededor de 180 microsegundos. «Esto es comparable con los tiempos de almacenamiento de todas las memorias cuánticas anteriores basadas en conjuntos de átomos», dice Stephan Ritter, otro investigador involucrado en el experimento. Sin embargo, un tiempo significativamente más largo de almacenamiento es necesario para que el método pueda  utilizarse en una computadora cuántica o una red cuántica. Hay también una característica de calidad más de la memoria cuántica de un solo átomo de Garching, que se puede mejorar: la eficiencia de la llamada. Es una medida de cuantos de los fotones irradiados se almacenan y luego se pueden leer de nuevo. Esto fue algo menos del 10 por ciento.

El tiempo de almacenamiento está limitado principalmente por las fluctuaciones del campo magnético del entorno del laboratorio, dice Ritter. «Por lo tanto, se puede aumentar mediante el almacenamiento de la información cuántica en los estados cuánticos de los átomos que son insensibles a los campos magnéticos.» La eficacia está limitada por el hecho de que el átomo no puede quedarse quieto en el centro del resonador, se mueve. Esto hace que la fuerza de la interacción entre átomos y fotones tienda a disminuir. Los investigadores pueden así también mejorar la eficiencia: por una mayor refrigeración del átomo, es decir, reduciendo aún más la energía cinética.

Los investigadores del Instituto Max Planck en Garching ahora quieren trabajar en estas dos mejoras. «Si esto tiene éxito, las perspectivas de la memoria cuántica de un solo átomo sería excelente», dice Stephan Ritter.

Fuente:  ScienceDaily

 

 

 

 

 

 

 

 

 

Related Posts with Thumbnails

Calendario

septiembre 2020
L M X J V S D
« Nov    
 123456
78910111213
14151617181920
21222324252627
282930  

Spam

Otros enlaces

  • Enlaces

    Este blog no tiene ninguna relación con ellos, ni los recomienda.


  • Paperblog

    autobus las palmas aeropuerto cetona de frambuesa