admin
EnglishFrenchGermanItalianPortugueseRussianSpanish

Categorías

Coobis

Grafeno

Discos basados en grafeno

Actualidad Informática. Discos basados en grafeno. Rafael Barzanallana. UMU

Investigadores  de Swinburne University of Technology han demostrado el potencial de un nuevo material para lograr el almacenamiento óptico de la información de forma segura.

En su más reciente artículo de investigación publicado en Scientific Reports, los investigadores Xiangping Li Qiming Zhang, Xi Chen y el profesor Min Gu demostraron el potencial para registrar codificación holográfica en un compuesto de polímero.

“Tradicionalmente, la información se registra como datos binarios en un disco. Si el disco se rompe, la información no se puede recuperar”, afirmó el Director del Centro de Micro-Fotónica de Swinburne, el profesor Min Gu. “Este es un importante costo de operación de los centros de datos grandes, que se componen de miles de conjuntos de discos con múltiples copias físicas de los datos El nuevo material permite el desarrollo de super-discos, lo que permitirá a la información ser recuperada, incluso de piezas dañadas.”

El óxido de grafeno es similar al grafeno, descubierto por Andre Geim y Konstantin Novoselov, que recibieron el Premio Nobel 2010 de Física por este descubrimiento revolucionario. El grafeno es muy fuerte, ligero, flexible, casi transparente, y es un excelente conductor del calor y electricidad.  El óxido de grafeno tiene propiedades similares, pero también presenta una propiedad fluorescente fundamental que se puede utilizar en bioimagen y para la grabación óptica multimodo.

Al enfocar  pulsos ultracortos de un haz láser en el polímero de óxido de grafeno, los investigadores crearon un aumento 10-100 veces en el del óxido de grafeno junto con una disminución en su fluorescencia. (El índice de refracción es la medida de la desviación de la luz a medida que pasa a través de un medio.)

“El hecho único de la modulación del índice de refracción gigante, junto a la propiedad de fluorescencia del polímero de óxido de grafeno ofrecen un nuevo mecanismo para la grabación óptica multimodo”, dijo el profesor Gu.

Para demostrar la viabilidad de este mecanismo, los investigadores codificaron la imagen de un canguro en un holograma generado por ordenador. Después, el holograma se representa como una grabación en tres dimensiones para el polímero de óxido de grafeno. Los patrones codificados en el holograma no podían ser vistos como una imagen de microscopio normal, pero se pudo recuperar en el modo de difracción.

“El índice de refracción gigante de este material se muestra prometedor para la fusión de almacenamiento de datos con la holografía de para la  codificación segura”, dijo el profesor Gu.

“Esta característica interesante no sólo aumenta el nivel de seguridad de almacenamiento, sino que también ayuda a reducir los costos de operación de los centros de datos grandes que dependen de múltiples copias físicas para evitar la pérdida de datos”.

Los investigadores afirman que también podría revolucionar la televisión de pantalla plana y tecnología de células solares. “Más importante aún, el grafeno se ha considerado como un reemplazo revolucionario para el silicio, que es la plataforma de tecnologías de la información actuales basados en la electrónica”, dijo el Dr. Xiangping Li.

“El índice de refracción gigante descubrimos muestra la promesa del para fusionar la electrónica y la fotónica para la plataforma de la próxima generación de tecnologías de la información. ”

Ampliar en:

Fotónica: El grafeno permite detectores de luz en un chip

Nature

 

 

Rafael Barzanallana

Transistor de una monocapa molecular apto para ordenadores

Actualidad Informática.  Transistor de una monocapa molecular apto para ordenadores. Rafael Barzanallana. UMU

Los componentes electrónicos construidos a partir de moléculas individuales utilizando síntesis química podría allanar el camino para dispositivos electrónicos, más “verdes” y sostenibles y más rápidos. Ahora, por primera vez, se ha elaborado un transistor de una sola monocapa molecular para trabajar donde realmente cuenta, en un chip de ordenador.

El circuito integrado molecular fue creado por un grupo de químicos y físicos del Chemistry Nano-Science Center de la Universidad de Copenhague y de la Academia de Ciencias de China, Beijing. El  descubrimiento acaba de ser publicado en línea en la revista científica  Advanced Materials. El descubrimiento fue posible gracias a un uso innovador del grafeno material bidimensional de carbono.

Primer paso hacia un circuito molecular integrado

Kasper Nørgaard es profesor asociado de química en la Universidad de Copenhague. Él cree que la primera ventaja del chip de grafeno del nuevo desarrollo será la de facilitar la prueba de los próximos componentes electrónicos moleculares. Pero también es seguro, que representa un primer paso hacia circuitos integrados moleculares adecuados. “El grafeno tiene algunas propiedades muy interesantes, que no puede ser igualada por ningún otro material. Lo que hemos demostrado por primera vez es que es posible integrar un componente funcional en un chip de grafeno. Sinceramente, siento que esto es noticia de primera plana “, dice Nørgaard.

Ver a través del emparedado central para funcionar

El chip de ordenador molecular es una especie de sándwich construido con una capa de oro, una de los componentes moleculares y otra extremadamente delgada de grafeno, un material de carbono. El transistor molecular en el emparedado  se enciende con la utilización de un impulso de luz que para una de las propiedades peculiares del grafeno es altamente útil. A pesar de que el grafeno es de carbono, es casi completamente transparente.

Ambientalmente importante, estratégicamente vitales

La búsqueda de transistores, cables, contactos y otros componentes electrónicos que se fabrican a partir de moléculas individuales ha tenido a los investigadores trabajando día y noche. A diferencia de los componentes tradicionales que se espera que no requieran metales pesados y elementos de tierras raras. Así deberían ser más baratos, así como menos perjudiciales para la tierra, el agua y los animales. Por desgracia, ha sido terriblemente difícil poner a prueba lo bien que estas moléculas funcionales trabajan.

La suerte

Anteriormente, la prueba de los componentes microscópicos tenía a los investigadores con un método comparable a una lotería. Para comprobar si una molécula de nuevo cuño conduciría o no  una corriente,  tenían que tirar prácticamente moléculas entre dos cables con corriente, con la esperanza de que al menos una molécula hubiera aterrizado de manera que cerrara el circuito.

El método de lotería suplantado por la colocación de precisión

Utilizando los nuevos chips de grafeno los investigadores ahora pueden colocar sus moléculas con gran precisión. Esto hace que sea más rápido y más fácil  probar la funcionalidad de cables moleculares, contactos y diodos de modo que se sabe si los químicos tienen que volver a sus vasos para desarrollar nuevas moléculas funcionales, explica Nørgaard.

“Hemos hecho un diseño, que va a mantener muchos tipos diferentes de moléculas”, dice, y continúa: “Debido a que el andamio grafeno está más cerca del  diseño real de chips, hace que sea más fácil  probar los componentes, pero por supuesto que es también un paso en el camino de hacer un circuito integrado real utilizando componentes moleculares. Además, no debemos perder de vista el hecho de que los componentes moleculares tienen que terminar en un circuito integrado, si van a ser de alguna utilidad en la vida real “.
El trabajo ha sido financiado por el Danish Chinese Center for Molecular Nano-Electronics y  por la  Danish National Research Foundation, European Union 7th framework for research (7PM) y por la Fundación Lundbeck.

Referencia:

Tao Li, Martyn Jevric, Jonas R. Hauptmann, Rune Hviid, Zhongming Wei, Rui Wang, Nini E. A. Reeler, Erling Thyrhaug, Søren Petersen, Jakob A. S. Meyer, Nicolas Bovet, Tom Vosch, Jesper Nygård, Xiaohui Qiu, Wenping Hu, Yunqi Liu, Gemma C. Solomon, Henrik G. Kjaergaard, Thomas Bjørnholm, Mogens Brøndsted Nielsen, Bo W. Laursen, Kasper Nørgaard. Ultrathin Reduced Graphene Oxide Films as Transparent Top-Contacts for Light Switchable Solid-State Molecular JunctionsAdvanced Materials, 2013; DOI: 10.1002/adma.201300607

Samsung presenta el “Barristor”, su transistor con grafeno

Actualidad Informática. Samsung presenta el

Uno de los postulados más conocidos en el mundo de la electrónica es la Ley de Moore (no se trata de una ley de la naturaleza, sino una tendencia), cuyo enunciado fue realizado por Gordon Moore (uno de los fundadores de Intel) en 1965 en el que venía a decir que cada dos años se duplicaría el número de transistores que se insertarían en los circuitos integrados, algo que se ha seguido cumpliendo prácticamente hasta ahora. La miniaturización, es decir, la realización de transistores más pequeños, ha permitido aumentar la capacidad de proceso de los circuitos integrados, sin embargo, la miniaturización comenzaba a ser un problema hoy en día con tamaños que hacen aflorar inestabilidades en el silicio.

Una de las soluciones que más se barajan en el campo de la microelectrónica es el uso de nuevos materiales que puedan complementar al silicio para poder traspasar esta barrera, por ejemplo el grafeno. Parece que el Instituto de Electrónica Avanzada de Samsung va a ser uno de los primeros en alcanzar este objetivo con el Barristor, un transistor con grafeno que han presentado en la revista Science.

Amplar en: ALT1040

Bajo licencia Creative Commons

Nuevo material basado en el grafeno podría revolucionar la industria de la electrónica

Actualidad Informática. Nuevo material basado en el grafeno podría revolucionar la industria de la electrónica, GraphExeter. Rafael Barzanallana

El material más transparente, ligero y flexible para la conducción de electricidad ha sido inventado por un equipo de la Universidad de Exeter (Reino Unido) . Llamado GraphExeter, el material podría revolucionar la creación de dispositivos electrónicos portátiles, como ordenadores, teléfonos, ropa y reproductores MP3.

GraphExeter también podría ser utilizado para la creación de espejos  ‘inteligentes’ o ventanas informatizadas con características interactivas. Dado que este material es también transparente sobre un amplio espectro de la luz, se podría mejorar en más de un 30% la eficiencia de paneles solares.

Adaptado de grafeno, GraphExeter es mucho más flexible que el óxido de estaño e indio (ITO), el material conductor principal actualmente en uso en la electrónica. ITO es cada vez más caro y es un recurso finito, que se espera  desaparezca en el año 2017.

Estos resultados de la investigación se publican en la revista Advanced Materials, una revista líder en ciencia de materiales.

Con tan sólo un átomo de grosor, el grafeno esla sustancia más delgada capaz de conducir electricidad. Es muy flexible y es uno de los materiales más resistentes conocidos. La carrera en que se n en los científicos e ingenieros para adaptar el grafeno a la electrónica flexible. Este ha sido un desafío debido a  relasistencia de las láminas, lo que limita su conductividad. Hasta ahora, nadie había sido capaz de producir una alternativa viable a la ITO.

Para crear GraphExeter, el equipo de Exeter intercaló moléculas de cloruro férrico entre dos capas de grafeno. El cloruro férrico mejora la conductividad eléctrica del grafeno, sin afectar a la transparencia del material.

El material fue elaborado por un equipo de la Universidad de Exetern en el Centro para la Ciencia del  grafeno. El equipo de investigación está desarrollando una versión de GraphExeteren aerosol , que podría ser aplicado directamente sobre las telas, espejos y ventanas.

La investigadora de la Universidad de Exeter, la Dra. Mónica Craciun, dijo: “GraphExeter podría revolucionar la industria de la electrónica,  supera a cualquier otra basada en el carbono, este conductor transparente utilizado en la electrónica y podría ser utilizado para una amplia gama de aplicaciones, desde paneles solares a rameras ‘inteligentes’. Estamos muy entusiasmados con el potencial de este material y esperamos ver donde puede llegar  la industria de la electrónica en el futuro. ”

TV tan delgada como una hoja de papel gracias a la electrónica impresa

Actualidad Informática. TV delgada como el papel. Rafael Barzanallana

Imagínese que posee un televisor con el grosor y el peso de una hoja de papel. Será posible, algún día, gracias a la creciente industria de la electrónica impresa. El proceso, que permite a los fabricantes imprimir, literalmente sobre superficies de materiales para producir un dispositivo electrónico funcional, ya se utiliza en las células solares orgánicas y  diodos orgánicos emisores de luz  (OLED), que forman las pantallas de los modernos teléfonos móviles celulares.

A pesar de que esta nueva tecnología se espera que crezca por decenas de miles de millones de dólares en los próximos 10 años, uno de los desafíos es la fabricación a bajo costo en condiciones ambientales. Con el fin de crear la luz o energía mediante la inyección o recolección de electrones, la electrónica impresa requiere conductores, generalmente calcio, magnesio o litio, con una baja función de trabajo. Estos metales son químicamente muy reactivo. Se oxidan y dejan de funcionar si se exponen al oxígeno y la humedad. Esta es la razón por la que  la electrónica en células solares y televisores, por ejemplo, debe ser cubierta con una barrera rígida, gruesa, como vidrio o caras capas de encapsulación.

Sin embargo, en los nuevos hallazgos publicados en la revista Science, investigadores de Georgia Tech han introducido lo que parece ser una técnica universal para reducir la función de trabajo de un conductor. Se extendió una capa muy delgada de un polímero, aproximadamente de unos 10 nanómetros de espesor, sobre la superficie del conductor para crear una superficie sólida dipolar. La interacción vuelve estables al aire a los conductores en electrodos eficientes, con una baja función de trabajo.

Los polímeros disponibles comercialmente pueden ser procesado fácilmente a partir de soluciones diluidas en disolventes tales como agua y metoxietanol.

“Estos polímeros son de bajo costo, ambientalmente amigables y compatibles con las técnicas existentes para producción en masa rollo a rollo”, dijo Bernard Kippelen, director del Centro de Tecnología de Georgia para la Fotónica y Electrónica Orgánica (COPE). “La sustitución de los metales reactivos con los conductores estables, incluyendo polímeros conductores, cambia por completo los requisitos de cómo se fabrican productos electrónicos protegidos. Su uso puede allanar el camino para un menor coste y dispositivos  más  flexibles.”

Para ilustrar el nuevo método, Kippelen y sus colegas evaluaron el desempeño de los polímeros orgánicos, en los transistores de película delgada y OLED. También han construido un prototipo: por primera vez, células solares completamente plásticas.

“El modificador de polímero reduce la función de trabajo en una amplia gama de conductores, incluyendo plata, oro y aluminio”, señaló Seth Marder, director asociado de COPE y profesor en School of Chemistry and Biochemistry. “El proceso también es eficaz en  metal-óxidos transparentes y grafeno”.

 

Investigadores desarrollan supercondensador de grafeno para dispositivos electrónicos portátiles

Actualidad Informática. Condensadores. Rafael BarzanallanaLos condensadores electroquímicos (EC), también conocidos como supercondensadores, difieren de los condensadores normales que se encuentran en su televisor o la computadora. Han llamado la atención como  dispositivos de almacenamiento de energía, ya que cargar y descargar es más rápido que las baterías, sin embargo, están todavía limitados por la densidad de energía que es baja, sólo una fracción de la densidad de energía de las baterías. Un condesador electrolítico que combina el rendimiento de energía de los condensadores con la alta densidad de energía de las baterías representaría un avance significativo en la tecnología de almacenamiento de energía. Esto requiere nuevos electrodos que no sólo mantengan una alta conductividad, sino también proporcione mayor área  superficial y más accesibles que los convencionales que utilizan CE activados por electrodos de carbono.

Ahora los investigadores de UCLA han utilizado  unidad óptica de DVD para producir dichos electrodos. Los electrodos se componen de una red ampliada de grafeno – una capa de un átomo de espesor de carbono grafítico – que muestra excelentes propiedades mecánicas y eléctricas, así como la superficie excepcionalmente alta.

Investigadores de la UCLA desde el Departamento de Química y Bioquímica, el Departamento de Ciencia de los Materiales e Ingeniería y el Instituto NanoSystems de California demuestran un alto rendimiento de los condensadores electroquímicos basados en el grafeno que mantienen excelentes atributos electroquímicos bajo tensión mecánica. El documento se publica en la revista Science.

El proceso se basa en el revestimiento de un disco DVD con una película de óxido de grafito que es entonces tratada con láser en el interior de una unidad de DVD LightScribe para producir electrodos de grafeno. Típicamente, el rendimiento de los dispositivos de almacenamiento de energía es evaluado por dos figuras principales, la densidad de energía y la densidad de potencia. Suponga que está utilizando el dispositivo para ejecutar un coche eléctrico – la densidad de energía nos dice hasta qué punto el coche puede ir con una sola carga, mientras que la densidad de potencia nos dice qué tan rápido puede ir el coche. Aquí, los dispositivos hechos con electrodos Laser Scribed Graphene (LSG) presentan  valores de ultra alta densidad de energía en diferentes electrolitos, manteniendo la alta densidad de potencia y estabilidad excelente ciclo de EC. Por otra parte, estos ECs mantienen excelentes atributos electroquímicos bajo tensión mecánica y por lo tanto mantienen la promesa de alta potencia en la electrónica flexible.

“Nuestro estudio demuestra que admiten más carga que las baterías convencionales, pero se puede cargar y descargar un cien a mil veces más rápido”, dijo Richard B. Kaner, profesor de química y ciencia de los materiales e ingeniería.

“A continuación, presentamos una estrategia para la producción EC de alto rendimiento basados en el grafeno, a  través de un simple enfoque de estado sólido que evita el reapilado de las hojas de grafeno”, dijo Maher F. El-Kady, el autor principal del estudio y un estudiante graduado en el laboratorio de Kaner.

El equipo de investigación ha fabricado  electrodos LSG que no tienen los problemas de los electrodos de carbono activado que hasta ahora han limitado el rendimiento de comercial de EC. En primer lugar, el láser LightScribe provoca la reducción simultánea y exfoliación del óxido de grafito y produce una red abierta de LSG con una superficie sustancialmente mayor y más accesible. Esto se traduce en una capacidad de almacenamiento de carga considerable para los supercondensadores LSG. La estructura de red abierta de los electrodos ayuda a minimizar la trayectoria de difusión de iones de electrólito, que es crucial para la carga del dispositivo. Esto puede explicarse por las hojas de grafeno fácilmente accesibles planas, mientras que la mayor parte del área superficial del carbono activado se encuentra en los poros muy pequeños que limitan la difusión de iones. Esto significa que los supercondensadores LSG tienen la capacidad de entregar energía ultraalta en un corto período de tiempo mientras que los del carbono activado no pueden.

Además, los electrodos LSG son mecánicamente robustos y muestran una alta conductividad (> 1700 S/m) en comparación con carbono activado (10-100 S/m). Esto significa que los electrodos LSG puede ser utilizados  directamente como electrodos supercondensadores sin la necesidad de aglutinantes o colectores de corriente como es el caso para el carbono activado convencional, ECS. Además, estas propiedades permiten a  los LSG actuar tanto como el material activo y la corriente de colector en el CE. La combinación de ambas funciones en una sola capa conduce a una arquitectura simplificada y hace de los LSG supercondensadores dispositivos rentables.

Comercialmente disponibles, los EC consisten en un separador colocado entre dos electrodos con electrolito líquido que o bien se enrolla en espiral o se envasa en un recipiente cilíndrico o apilados en una pila de botón. Por desgracia, estas arquitecturas de dispositivos no sólo sufren de una posible fuga nociva de electrolitos, pero su diseño hace que sea difícil usarlos para prácticas de electrónica flexible.

El equipo de investigación sustituye el electrolito líquido con un electrolito de polímero gelificado que también actúa como un separador, reduciendo aún más el espesor del dispositivo y el peso y la simplificación del proceso de fabricación, ya que no requiere materiales especiales de embalaje.

A fin de evaluar en condiciones reales el potencial de  LSG-CE para el almacenamiento flexible, el equipo de investigación colocó un dispositivo de bajo constante estrés mecánico para analizar su rendimiento. Curiosamente, esto tuvo un efecto casi nulo en el rendimiento del dispositivo.

“Atribuimos el alto rendimiento y durabilidad a la alta flexibilidad mecánica de los electrodos a lo largo de la estructura de la red de interpenetración entre los electrodos y el electrolito LSG gelificado”, explica Kaner. “El electrolito se solidifica en el conjunto del dispositivo y actúa como pegamento que mantiene a los componentes del dispositivo juntos”. El método mejora la integridad mecánica y aumenta el ciclo de vida del dispositivo, incluso cuando se ensaya en condiciones extremas.

Este notable desempeño aún no se ha realizado en los dispositivos comerciales, estos supercondensadores LSG podrían  abrir el camino a sistemas de almacenamiento ideales de energía para la próxima generación de electrónica flexible para  portátiles.

Fuente: EurekAlert!

Cómo construir grafeno con un lápiz y cinta adhesiva

El siguiente vídeo (de Verisatium) muestra  como hacer una nanoestructura tan pequeña sin necesidad de complejos y caros instrumentos,  de la misma forma que lo hicieron los dos laureados con el premio Nobel  de 2010: ¡con un simple lápiz y cinta adhesiva!

Grafino mejor que grafeno

Actualidad Informática. Gragino mejor que grafeno. Rafael BarzanallanaSuperfuerte y buen conductor el grafeno es el material  más  de moda en la física, pero nuevas simulaciones informáticas sugieren que los materiales llamados grafinos podrían ser igual de impresionantes. Grafinos son hojas de un átomo de espesor de carbono que se asemejan a grafeno, salvo en el tipo de enlaces atómicos. Hasta ahora sólo pequeños trozos de grafino se han fabricado, pero las nuevas simulaciones, que se describen en la revista Physical Review Letters, pueden inspirar nuevos esfuerzos para la construcción de grandes muestras. Los autores muestran que tres grafinos diferentes tienen una estructura electrónica semejante al grafeno. La simetría única en uno de estos grafinos potencialmente puede dar lugar a nuevos usos en dispositivos electrónicos, más allá de los del grafeno.

El grafino difiere de su primo de carbono el grafeno, que su marco 2D contiene enlaces triples, además de los dobles enlaces. Estos enlaces triples abren un conjunto potencialmente infinito de geometrías diferentes más allá de la red hexagonal perfecta del grafeno, aunque sólo se han sintetizado pequeños trozos de grafino,  hasta el momento. Sin embargo, esto no ha impedido a los teóricos la exploración de sus propiedades. Un trabajo reciente dio un indicio de que podrían tener ciertos grafinos conos de Dirac. Para comprobar esto, Andreas Görling de la Universidad de Erlangen-Nuremberg en Alemania y sus colegas han realizado una investigación más rigurosa del grafino.

En un examen más detallado del grafino rectangular simétrico, el equipo descubrió que los conos de Dirac no eran perfectamente cónicos. Un corte vertical en la dirección del “lado corto” de la red rectangular dio un triángulo invertido como cabría esperar, pero en la dirección perpendicular, paralela a la “cara larga”, la sección transversal estaba curvada, como un triángulo doblado hacia una parábola. Esta distorsión debe conducir a una conductancia que depende de la dirección de la corriente, una característica que no se encuentra en el grafeno pero que podría ser explotada en dispositivos electrónicos a nanoescala, afirma  Görling. Otra propiedad potencialmente útil de este grafino es que, naturalmente, debe contener electrones de conducción y no debería requerir  “dopantes”,  átomos que se añaden como  fuente de electrones, como se requiere para el grafeno.

Amplar en: Next Big Future

El grafeno revela su personalidad magnética

Actualidad Informática. Grafeno magnético. Radael Barzanallana¿Puede la materia orgánica comportase como un imán de nevera? Los científicos de la Universidad de Manchester (Reino Unido) han demostrado que es posible.

En un informe publicado en Nature Physics , utilizaron  grafeno, el material más delgado y más fuerte del mundo, y lo hicieron  magnético. El grafeno es una lámina de átomos de carbono dispuestos en una estructura de alambrada de gallinero. En su estado prístino no muestra signos de magnetismo convencional, por lo general asociados con materiales como el hierro o  níquel.

Demostrando sus notables propiedades investigadores de Manchester ganaron el Premio Nobel de Física en 2010.

Esta última investigación dirigida por la Dra. Irina Grigorieva y el profesor Sir Andre Geim (uno de los galardonados con el premio Nobel) podría resultar crucial para el futuro del grafeno en la electrónica.

Los investigadores de Manchester tomaron grafeno magnético y luego  fue ‘salpicado’ con otros átomos no magnéticos, como el flúor o quitaron algunos átomos de carbono de la estructura del grafeno. Los espacios vacíos, llamados huecos (vacantes), y los átomos  añadidos, resultaron pasar a ser magnéticos, exactamente como otros átomos como por ejemplo el hierro.

“Es como menos multiplicado por menos te da más”, dice la Dra. Irina Grigorieva. Los investigadores encontraron que, al  comportarse como átomos magnéticos, los defectos deben estar muy lejos el uno del otro y su concentración debe ser baja. Si  se se agregan muchos defectos de grafeno, residen muy cerca y anulan entre sí el magnetismo. En el caso de vacantes, su alta concentración hace que el grafeno se desintegre.

El profesor Geim dijo: “El magnetismo observada es muy pequeño, e incluso la mayoría de las muestras de grafeno magnetizado no se adherirían a un frigorífico. “Sin embargo, es importante llegar a la claridad en lo que es posible para el grafeno y lo que no es. El área del magnetismo en materiales no magnéticos ya ha tenido muchos falsos positivos. ”

“El uso más probable de este fenómeno se encuentra en la espintrónica. Los dispositivos de espintrónica se han generalizado, sobre todo los que se pueden encontrar en los discos duro de los ordenadores. Funcionan debido al acoplamiento del magnetismo y la corriente eléctrica.

“La adición de este nuevo grado de funcionalidad puede resultar importante para posibles aplicaciones del grafeno en la electrónica”, añade el Dr. Grigorieva.

Fuente: Spin-half paramagnetism in graphene induced by point defects, by R. Nair, M. Sepioni, I-Ling Tsai, O. Lehtinen, J. Keinonen, A. Krasheninnikov, T. Thomson, A. Geim and I. Grigorieva.

Disponible en el Gabinete de Prensa de la universidad.

The University of Manchester

Intel e IBM revelan el futuro de los “chips” para ordenadores

Actualidad Informática. Nuevos circuitos integrados de grafeno, IBM. Rafael Barzanallana
En las últimas horas hemos visto a dos de los nombres más importantes en la tecnología de revelando el futuro de los chips para computadoras -ya sea  intencionalmente o no.

Un documento filtrado de Intel muestra que la  pautade compañía la  para la siguiente generación de procesadores, que debe comenzar a rodar a principios del año que viene. Mientras tanto, IBM ha presentado su visión a largo plazo de la tecnología de procesamiento, comienza a trazar los desarrollos sin descubrir lo que viene después de silicio cuando se vuelva obsoleto. La compañía ha mostrado algunas de estas técnicas emergentes, que a menudo superan a sus equivalentes de silicio y se puede construir utilizando técnicas de producción similares.

La llegada de Ivy

En un documento filtrado reportados por X-bit Labs , Intel revela su hoja de ruta de productos para Ivy Bridge, la nueva generación de chips de computadora que se encontrará pronto en PCs y Macs. Ivy Bridge lleva a  la compañía  al rango de 22 nanómetros en los microprocesadores. Los chips más pequeños logran mayor  frecuencia de procesamiento.

Ivy Bridge sinifica máquinas con cerca de 4 GHz de potencia de procesamiento, de acuerdo con el documento Top-of-the-line, el Intel Core i7 3.9 GHz contará con un diseño de cuatro núcleos, lo que significa que las distintas partes del  chip puede trabajar de forma independiente. Esto es útil en software, como juegos, que pueden tener múltiples operaciones a la vez. El chip más bajo de gama, un diseño de Core i5, seguirá siendo de cuatro núcleos funcionando a 2,7 GHz, siendo bastante rápido para los estándares actuales.

Aunque estos chips utilizan una nueva tecnología conocida como Tri-Gate,  todavía están basados en el silicio. El cofundador de Intel Gordon Moore escribió la célebre frase acerca de cómo el número de transistores en los chips de silicio se duplicaría aproximadamente cada dos años, y la tecnología en general ha seguido ese paso. Es tan consistente que la observación se conoce como Ley de Moore.

Mientras los fabricantes de chips están todavía investigando las profundidades a las que llegan en términos de mantener el número de transistores cada vez más reducidos, se llegará a ese límite muy pronto, dicen los expertos. Una vez que los circuitos se reduzcan a alrededor de siete nanómetros, los efectos cuánticos empiezan a suceder, y será imposible lograr chips más pequeños – no con  silicio, de todos modos.

Más allá de silicio

Mientras tanto, IBM  presentó su plan a largo plazo, como se informó en el Wall Street Journal , para ir más allá de silicio y la toma del poder de procesamiento a nuevos niveles. La compañía está apostando en tres tecnologías: los nanotubos de carbono, el grafeno, y algo que llama “memoria de circuito.”

El primer enfoque implica el cambio de silicio en favor de carbono. IBM describe cómo la compañía ha construido un transistor hecho de nanotubos de carbono en el rango de 10 nanómetros. Además del pequeño tamaño atractivo, superó al silicio en varias métricas clave.

El grafeno, descubierto en 2004, ha sido aclamado como un nuevo tipo de sustancia se preguntan – a pesar de que es esencialmente una forma de carbono y, al igual que la punta del lápiz. El grafeno es el rey de lo pequeño – tiene sólo un átomo de espesor – y es altamente conductor. IBM construyó el primer circuito de grafeno a principios de este año, y ahora dice que se pueden construir chips de grafeno utilizando las líneas de producción por lo general utilizados para el silicio, que es un buen augurio para la producción masiva.

La memoria de circuito consiste en reemplazar la memoria flash, usado en todo desde iPhones a las tarjetas SD, con imanes microscópicos cambiado a lo largo de alambre pequeño bucles llamados nanocables. IBM ha demostrado esta técnica, también, que también se construye conlas  líneas defabricación de  productos normales.

La necesidad de velocidad

¿Crees que tu equipo es lo suficientemente rápido? Eso está muy bien, pero hay un montón de aplicaciones para las tecnologías emergentes que están deseando más avances en potencia de procesamiento. Los juegos como Call of Duty: Modern Warfare 3 empujan las máquinas de hoy a sus límites, y la visión de los desarrolladores sólo está limitado por la potencia de procesamiento de las máquinas.

Además, el campo entero de la computación cuántica y hypercomputing dependen de la toma de potencia de procesamiento a niveles hasta ahora desconocidos. La propia IBM tiene grandes planes para las nuevas plataformas que surgen de su muy publicitado proyecto Watson , y aquellos que necesitan la potencia de procesamiento avanzadas.

Mientras que el futuro de las computadoras es todavía incierto, en definitiva, los fabricantes de chips están trabajando frenéticamente para asegurarse de que no llegan a un punto muerto.

Fuente: mashable Tech

Related Posts with Thumbnails

Calendario

July 2014
M T W T F S S
« Jun    
 123456
78910111213
14151617181920
21222324252627
28293031  

Spam

Otros enlaces

  • Enlaces

    Este blog no tiene ninguna relación con ellos, ni los recomienda.


  • Paperblog

    autobus las palmas aeropuerto cetona de frambuesa