admin

Categorías

Coobis

Baterías

Otro teléfono Samsung explota y calcina un coche por completo

Los dueños del vehículo se encontraban en un pequeño mercado local. Y mientras preparaban un escritorio que habían comprado para su hija, el hombre había dejado su nuevo Samsung Note 7 cargando dentro del coche Jeep. Cuando iban a volver su perro los estaba alertando, pero ya era demasiado tarde: el auto estaba en llamas.

Según informaron en las noticias de la FOX 13 , un representante de Samsung estaría al tanto de la situación y haría “todo lo posible” por la familia.

Fuente: conéctica

¿Por qué rebotan las pilas alcalinas viejas?

Una reacción química colateral en la pila es lo que provoca un cambio en la elasticidad del material.

Una pila alcalina no-recarcable inicia su vida útil usando polvo de zinc mezclado en un gel que contiene un electrolito de hidróxido de potasio; una membrana lo separa del  dióxido de manganeso con el que se hace intercambio de iones para brindar la diferencia de voltaje necesario para nuestros aparatos electrónicos. 
Conforme la batería se descarga el polvo de dióxido de manganeso se  convierte en oxido de manganeso provocando que se formen grumos que van creciendo, el efecto del empaquetamiento de los grumos es el responsable de que reboten las pilas.

Fuente: El Tao de la Física

Una batería que ‘respira’ podría alimentar vehículos eléctricos

Actualidad Informática. Batería litio-aire. Rafael Barzanallana

Las ventas de vehículos eléctricos (EV) casi se duplicó en 2013, pero la mayoría se  desplazarán más de 100 km con una sola carga. Para aumentar su rango, los investigadores informan de un nuevo progreso con una batería de «respiración» que tiene el potencial de reemplazar algún día la tecnología de iones de litio de vehículos eléctricos de hoy en día. Los investigadores presentaron su trabajo en la 247 Reunión Nacional y Exposición de la American Chemical Society (ACS), la sociedad científica más grande del mundo.

Los investigadores se han reunido para dar más de 10000 informes sobre los últimos avances de la ciencia. Las presentaciones se llevan a cabo en el Centro de Convenciones de Dallas y hoteles del área.

«Las baterías de litio-aire son ligeras y ofrecen una gran cantidad de energía eléctrica», dijo Nobuyuki Imanishi, Ph.D. «Muchas personas esperan que algún día puedan ser utilizadas en vehículos eléctricos.»

La principal diferencia entre las baterías de iones de litio y litio-aire es que este último reemplaza el cátodo tradicional – un componente de la batería clave implicado en el flujo de la corriente eléctrica – con el aire. Eso hace que la batería de metal-aire recargable sea más ligera con el potencial para almacenar más energía que su contraparte comercial.

Mientras que las baterías de litio-aire se han promocionado como una tecnología emocionante, todavía tienen algunos problemas que necesitan ser resueltos. Los investigadores están avanzando en varios frentes para conseguir las baterías en su mejor forma antes de debutar bajo el capó.

Uno de los principales componentes de los investigadores están trabajando en los electrolitos, los materiales que conducen la electricidad entre los electrodos de las pilas. Actualmente hay cuatro diseños de electrolitos, uno de los cuales implica agua. La ventaja de este diseño «acuoso» sobre los demás es que protege el litio de la interacción con los gases en la atmósfera y permite reacciones rápidas en el electrodo de aire. La desventaja es que el agua en contacto directo con el litio puede dañarlo.

Viendo el potencial de la versión acuosa de la batería de litio-aire, el equipo de Imanishi en la Universidad de Mie en Japón abordó esta cuestión. Adición de un material de protección para el metal de litio es un enfoque, pero esto normalmente disminuye la energía de la batería. Así que desarrollaron un enfoque por capas, intercalando un electrolito de polímero con alta conductividad y un electrolito sólido entre el electrodo de litio y la solución acuosa. El resultado fue una unidad con el potencial de hacer las baterías con casi el doble de capacidad de almacenamiento de energía, según se mide en vatios hora por kilogramo (Wh/kg), como una batería de iones de litio.

«La densidad de energía práctica de nuestro sistema es más de 300 Wh/kg,» dijo Imanishi. «Eso está en contraste con la densidad de energía de una batería de iones de litio comercial, que es mucho menor, sólo alrededor de 150 Wh/kg.»

La batería mostró muchas promesas, con alta conductividad de iones de litio, y la capacidad de descarga y recarga de 100 veces. Además de la alimentación de los vehículos eléctricos, las baterías de litio-aire podrían tener algún día aplicaciones en el hogar, gracias a su bajo costo. la salida de energía sigue siendo un gran obstáculo, pero Imanishi dijo que su grupo se ha comprometido a perfeccionar este enfoque, así como explorar otras opciones, hasta que de litio-aire se convierte en una realidad comercial.

Impresión 3D para la fabricación de baterías Ion-Li

En  la Universidad de Harvard (liderados por Jennifer A. Lewis)  han diseñado un nuevo método de fabricación de baterías Li-ion que combina las indudables bondades de la tecnología (existente) de micro-impresión 3D con una nueva «tinta» nanotecnlológica que ellos mismos han desarrollado. Veámoslo con más detalle.

Actualidad Informática. Impresora 3D de baterías ion-Li. Rafael Barzanallana

El proceso de fabricación completo consta de cuatro fases que se describen en la imagen inferior y que, a su vez, requieren de cierta preparación previa:

a) Current collector (el colector de corriente). En esta fase, se prepara la parte de recopilación de energía de la bateríapara su posterior conexionado. Para ello, se dispone sobre un cristal (glass) de alta pureza un patrón de oro (Au) o cobre (Cu) que puede ser creado utilizando un proceso de fotolitografía, un método común en la industria microelectrónica
b) Impresión del ánodo. Esta fase requiere un proceso previo de preparación del material a utilizar. El equipo de Harvard decidió utilizar un ánodo de LTO (metatitanato de Litio), tecnología que se utiliza regularmente en aplicaciones comerciales a día de hoy. No obstante, el uso de este tipo de ánodos está adaptado al proceso de fabricación basado en moldes, que es el predominante en la industria, por lo que, de ningún modo, era posible utilizar este polvo metálico en una impresora 3D.

c) Impresión del cátodo. El proceso de preparación y aplicación de esta fase es idéntico al anterior, lo único que se modifica es el material a utilizar, que en este caso es LFP (ferrofosfato de Litio o LiFePO4), muy común en la fabricación de baterías tradicionales de Li-ion.

d) Empaquetado. Última fase del proceso que es perfectamente adaptable al uso de la batería. Puede incluir elementos de conexionado o simplemente aislar la batería con un encapsulado plástico o de cristal.

Una vez finalizado el proceso, la batería se solidifica a temperatura ambiente y está lista para su uso, evitando el tratamiento de alta temperatura que se utiliza en baterías de Li-ion tradicionales. El producto final son microbaterías de Li-ion de 1 mm3 en las primeras pruebas, que es el tamaño aproximado de un grano de arena y unas 1000 veces inferior al volumen de las baterías comerciales más pequeñas que se pueden encontrar en el mercado.

La posibilidad que nos brinda esta tecnología es doble; por un lado puede ofrecer una solución energética excepcional para el desarrollo de nuevos dispositivos microscópicos, como sensores biomédicos o microdrones. Por otro, al ser esta tecnología escalable, abre nuevas posibilidades en el campo del autoconsumo o de las tecnologías móviles.

Ampliar en: Relampo


armarios lacados
guardamuebles las palmas
Incineracio animals Barcelona

Por qué fallan las baterías de ion-litio

Actualidad Informática. Por qué fallan las baterías de ion-litio. Rafael Barzanallana. UMU

Los materiales en los electrodos de las baterías de iones de litio se expanden y se contraen durante la carga y descarga. Estos cambios de volumen favorecen la fractura de las partículas, lo que acorta la vida de la batería. Un grupo de científicos de ETH junto con colaboradores de la ISP cuantifican este efecto, por primera vez, mediante el uso de películas en 3D de alta resolución grabadas mediante tomografía de rayos x en Swiss Light Source.

Las baterías de litio se encuentran en nuestros teléfonos móviles celulares, ordenadores portátiles y cámaras digitales. Existen pocos dispositivos electrónicos portátiles que no dependan de estas fuentes de energía. Actualmente los electrodos de la batería contienen materiales activos conocidos como compuestos de intercalación.  Almacenan la carga en su estructura química sin sufrir un cambio estructural importante. Eso hace que estas baterías tengan comparativamente larga vida y sean seguras. Sin embargo, los materiales de intercalación tienen un inconveniente: su densidad de energía, la cantidad de energía que pueden almacenar por unidad de volumen y masa es limitada.

En la búsqueda de baterías de mayor densidad de energía, los científicos han experimentado durante más de 20 años con materiales capaces de procesos repetitivos de aleación y desaleación con litio. Experimentos a escala de laboratorio han demostrado que las baterías con este tipo de materiales tienen densidades de energía varias veces mayores que la de los materiales de intercalación, sin embargo, estos materiales de aleación aún no son explotados en la industria debido a que su tiempo de vida es limitado. Martin Ebner, Ph.D. estudiante en el Laboratorio de Nanoelectrónica en el Departamento de Tecnología de la Información e Ingeniería Eléctrica (D-TET ) explica: » su capacidad normalmente desaparece después de un par de ciclos de carga y descarga». Esto se atribuye a una masiva – hasta tres veces – expansión del material del electrodo durante la carga. Durante la descarga, se contraen los materiales de nuevo, pero no llegan a su estado original. Partículas de los electrodos se rompen, la estructura del  electrodo se desintegra, y los fragmentos pierden contacto con el resto de la célula.

Baterías, rayos X durante la operación

Para entender mejor este complejo de la degradación electroquímica y mecánica del electrodo y para comprender mejor cómo desarrollar mejores baterías, Martin Ebner el profesor de ETH y Vanessa Wood, jefe del Laboratorio de Nanoelectrónica en D – ITET, reconocieron la necesidad de estudiar en una batería los electrodos de forma no invasiva durante el funcionamiento. Para ello, recurrieron a una herramienta de imagen desarrollada por el profesor Marco Stampanoni. El professsor Stampanoni, trabaja en el Instituto de Ingeniería Biomédica de D – ITET y ejecuta la tomografía de rayos X en el Swiss Light Source, la instalación sincrotrón en el Instituto Paul Scherrer. La radiación de rayos X del sincrotrón espectralmente pura e intensa permite la adquisición rápida de imágenes de rayos X de alta resolución que pueden ser computacionalmente ensambladas en películas tridimensionales.

Los investigadores observaron en el interior de la batería,  cargar y descargar más de 15 horas. Se reunieron las películas únicas, tridimensionales que captan los mecanismos de degradación que ocurren en la batería y se cuantifican los procesos que ocurren dentro de cada partícula para los miles de partículas en el electrodo. Los resultados de este estudio serán publicados en la revista Science, una versión pre-print está disponible en línea en Science Express .

Cambios estructurales irreversibles

Los datos ilustran que las partículas de óxido de estaño (SnO) se expanden durante la carga debido a la afluencia de iones de litio causando un aumento en volumen de la partícula. Los científicos demuestran que el material de litiación actúa como un proceso de núcleo-corteza, progresando de manera uniforme desde la superficie de la partícula hacia el núcleo. El material al someterse a esta reacción se expande linealmente con la carga almacenada. Las imágenes de rayos X muestran que la carga destruye la estructura de las partículas de forma irreversible con las grietas que se forma dentro de las partículas. «Esto – la formación de grietas no es al azar «, enfatiza Ebner. Las grietas crecen en lugares donde la red cristalina contiene defectos preexistentes. Durante la descarga, el volumen de la partícula disminuye, sin embargo, el material no llega a su estado original de nuevo, el proceso por lo tanto no es completamente reversible .

El cambio de volumen de las partículas individuales impulsa la expansión de todo el electrodo de 50 micrómetros a 120 micrómetros. Sin embargo, durante la descarga, los  electrodos sólo se contraen a 80 micrómetros. Esta deformación permanente del electrodo demuestra que el aglutinante de polímero que contiene al electrodo aún no está optimizado para los materiales de expansión de gran volumen. Esto es crítico para el rendimiento de la batería debido a la deformación del aglutinante hace que las partículas individuales que se desconectan desde el electrodo y la batería pierdan capacidad .

Además de demostrar que la microscopía tomográfica de rayos X proporciona una idea de cambios morfológicos en las partículas y los electrodos, los investigadores muestran que esta técnica también se puede utilizar para obtener información química cuantitativa y espacial. Por ejemplo, los investigadores analizan la composición química a lo largo del electrodo de la batería para observar las diferencias en la dinámica de litiación a nivel de una sola partícula y comparar esto con el comportamiento medio de las partículas. Este enfoque es esencial para la comprensión de la influencia del tamaño de partícula, forma, y la homogeneidad de electrodo en el rendimiento de la batería .

Estas ideas sobre el funcionamiento de una batería no sería posible sin la configuración de tomografía de rayos X muy avanzada en el Swiss Light Source. «La visualización de las baterías en funcionamiento era esencialmente imposible hasta los últimos avances en tomografía de rayos X. Gracias a las instalaciones de clase mundial desarrolladas por el profesor Stampanoni y su equipo, podemos ver que hace la batería en el trabajo», añade Wood con entusiasmo.

Alternativas a los materiales cristalinos

Los investigadores eligieron óxido de estaño cristalino como un material modelo porque sufre una serie de transformaciones complejas también presentes en otros materiales, lo que permite una comprensión más profunda en el comportamiento de una variedad de materiales de la batería. Las ideas son la base para el desarrollo de nuevos materiales de los electrodos y de las estructuras de electrodos que sean tolerantes a la expansión de volumen. Para el Prof. Wood los resultados de este trabajo indican el beneficio del uso de materiales amorfos o nanoestructurados en lugar de los cristalinos». En la búsqueda de nuevos materiales, también hay que tener en cuenta que sólo son de interés industrial si pueden ser producidos en grandes cantidades a un bajo costo. Sin embargo, los materiales amorfos y nanoestructurados ofrecen un campo de juego suficiente para la innovación» subraya Wood.

Ampliar en: Researchers observe swelling of single-particle of silicon electrode for lithium ion batteries during charging reaction

Más información: Ebner M, Marone F, Stampanoni M, Wood V. Visualization and quantification of electrochemical and mechanical degradation in Lithium ion batteries. Science Express, publicado en línea 17 octubre 2013.

Related Posts with Thumbnails

Calendario

septiembre 2024
L M X J V S D
« Nov    
 1
2345678
9101112131415
16171819202122
23242526272829
30  

Spam

Otros enlaces

  • Enlaces

    Este blog no tiene ninguna relación con ellos, ni los recomienda.


  • Paperblog

    autobus las palmas aeropuerto cetona de frambuesa