admin
EnglishFrenchGermanItalianPortugueseRussianSpanish

Categorías

Coobis

Ciencia

Refuerzan cables submarinos frente ataques de tiburones

FASTER  es un proyecto de 300 millones de dólares en el que Google participa, su finalidad es unir mediante un cable submarino Estados Unidos con dos puntos de Japón para mejorar las conexiones a internet. Parece ser que quieren tomar todas las precauciones necesarias a la hora de llevar a cabo este proyecto, motivo por el cual comenzarán a proteger sus cables de los ataques de los tiburones.

La electrorrecepción es una habilidad biológica que permite detectar cualquier señal o impulso eléctrico por pequeño que sea. En su hábitat natural, los tiburones utilizan esta capacidad para ubicarse en el espacio y percibir los débiles campos eléctricos de otros peces para alimentarse. Los cables de fibra óptica submarinos deben transportar una gran cantidad de energía para alimentar los repetidores ubicados en el fondo del mar, por lo que estos campos eléctricos son los que atraen a los tiburones. Por este motivo, de ahora en adelante Google reforzará todos sus cables submarinos con algo similar al Kevlar, un material ultra resistente con el que los cables soportarían los ataques de los tiburones.

Fuente: wwwhat’s new

Licencia CC

Verificación de la pureza de grafeno mediante ondas a frecuencia de terahercios

Actualidad Informática. Verificación de la pureza de grafeno mediante ondas a frecuencia de terahercios. Rafael Barzanallana

El grafeno puede ser difícil de manejar. El entorno que rodea al material de espesor de un átomo de carbono puede influir en su rendimiento electrónico, según los investigadores de las universidades  de Rice y Osaka, que han logrado con una forma sencilla de detectar contaminantes.

Porque es muy fácil de introducir accidentalmente impurezas en el grafeno, los laboratorios liderados por los físicos Junichiro Kono de Rice (EE.UU.) y Masayoshi Tonouchi del Instituto de Ingeniería Láser de Osaka (Japón) descubrieron una forma de detectar e identificar moléculas contaminantes en su superficie, mediante espectroscopia a frecuencia de terahercios.

Esperan que el hallazgo sea importante para los fabricantes que consideren en el futuro el uso de grafeno en los dispositivos electrónicos.

La investigación fue publicada esta semana en línea en la revista Nature Scientific Reports. Esto fue posible por el programa NanoJapan basado en Rice, a través del cual los estudiantes universitarios estadounidenses realizan pasantías de investigación de verano en laboratorios japoneses.

Incluso una sola molécula de una sustancia extraña puede contaminar el grafeno lo suficiente para afectar a sus propiedades eléctricas y ópticas, dijo Kono. Por desgracia (y tal vez irónicamente), se incluyen los contactos eléctricos.

“Tradicionalmente, con el fin de medir la conductividad de un material, hay que adjuntar los contactos y luego hacer mediciones eléctricas”, dijo Kono, cuyo laboratorio se especializa en la investigación a frecuencias de  terahercios. “Sin embargo, nuestro método es sin contacto.”

Eso es posible porque el compuesto fosfuro de indio emite ondas de terahercios cuando se excita. Los investigadores lo utilizaron como sustrato para el grafeno. Lanzaron contra el material  pulsos de femtosegundos de un láser infrarrojo, lo que hizo que el fosfuro de indio emitiera señales de  terahercios de retorno a través del grafeno. Las imperfecciones tan pequeños como una molécula de oxígeno parásita en el grafeno fueron captadas por un espectrómetro.

“El cambio en la señal de terahercios debido a la adsorción de moléculas es notable”, dijo Kono. “No sólo la intensidad, sino también la forma de onda de la radiación de terahercios emitida totalmente y de forma dinámica cambia en respuesta a la adsorción y desorción molecular. El siguiente paso es explorar la sensibilidad última de esta técnica única para la detección de gas.”

La técnica puede medir tanto la ubicación de la contaminación de las moléculas y los cambios en el tiempo. “El láser elimina gradualmente las moléculas de oxígeno del grafeno, cambiando su densidad, y eso lo podemos ver”, afirmó Kono.

El experimento consistió en el crecimiento de grafeno prístino través de la deposición de vapor químico y su transferencia a un sustrato de fosfuro de indio. Los pulsos láser generan estallidos coherentes de radiación terahecios a través del campo eléctrico de la superficie del sustrato fosfuro de indio, que cambia debido a la transferencia de carga entre el grafeno y las moléculas contaminantes. La onda de terahercios, cuando se visualiza, refleja el cambio.

Los resultados experimentales son una advertencia para los fabricantes de productos electrónicos. “Para cualquier dispositivo futuro diseñado usando grafeno, tenemos que tener en cuenta la influencia de los alrededores”, dijo Kono. El grafeno en un vacío o intercalado entre capas no contaminantes probablemente sería estable, pero la exposición al aire lo contamina, afirmó.

Los laboratorios de Rice y Osaka continúan colaborando en un proyecto para medir la conductividad del grafeno a terahercios en varios sustratos.

Los autores del artículo incluyen a la alumna de Rice Mika Tabata, quien condujo la investigación como participante NanoJapan 2012 en el laboratorio Tonouchi, y el estudiante graduado Minjie Wang; los profesores asociados Iwao Kawayama y Hironaru Murakami y los estudiantes de posgrado Yuki Sano y Khandoker Abu Salek de Osaka; y Robert Vajtai, un compañero de profesores de alto nivel, y Pulickel Ajayan, el Benjamin M. y Mary Anderson Greenwood profesor en Ingeniería, profesor de ciencia de los materiales y la nanoingeniería y  química, y presidente del Departamento de Ciencia de los Materiales y NanoIngeniería, todos en Rice.

La National Science Foundation (NSF); la Sociedad Japonesa para la Promoción de la Ciencia; el Ministerio de Educación, Cultura, Deportes, Ciencia y Tecnología de Japón y la Fundación Murata Ciencia apoyaron la investigación. NanoJapan es financiado por las asociaciones de la NSF para la Investigación Internacional y el programa de Educación.

Fuente: Y. Sano, I. Kawayama, M. Tabata, K. A. Salek, H. Murakami, M. Wang, R. Vajtai, P. M. Ajayan, J. Kono, M. Tonouchi. Imaging molecular adsorption and desorption dynamics on graphene using terahertz emission spectroscopy. Scientific Reports, 2014; 4 DOI: 10.1038/srep06046

Nuevo procesador de IBM que simula una red de un millón de neuronas

Actualidad Informática. Nuevo procesador de IBM que simula una red de un millón de neuronas. Rafael Barzanallana

Tiene el tamaño de un sello de correos, pero en su interior contiene el equivalente a un millón de neuronas con 256 millones de conexiones sinápticas programables. El nuevo chip de IBM da un paso más hacia el objetivo de crear un procesador capaz de simular el funcionamiento del cerebro humano.

TrueNorth, que es como se llama este chip, es un salto cuantitativo impresionante respecto a la primera versión, que solo equivalía a 256 neuronas con 262144 sinapsis programables. De un único núcleo neurosináptico, este proyecto de IBM y el programa DARPA SyNAPSE ha pasado a 4096 núcleos.

Con todo, las cifras son irrisorias en comparación con las de un cerebro humano. Solo en la corteza cerebral tenemos entre 15000 y 33000 millones de neuronas. Cada milímetro cúbico de córtex cerebral contiene aproximadamente 1000 millones de sinapsis.

El reto de la computación cognitiva sigue estando lejos, pero eso no le quita mérito a TrueNorth y, de hecho, demuestra la potencia que tiene esta arquitectura de cara al futuro. Mientras llega el momento en el que tengamos que temer que una inteligencia artificial nos ponga en la lista de especies a extinguir, TrueNorth será especialmente útil para desarrollar dispositivos en los que es importante un funcionamiento similar al del cerebro humano.

Ampliar en: GIZMODO

Mini robot casero

 

Diferencia entre conducir un vehículo en la Luna y en Marte

¿Cómo es posible que la nave espacial norteamericana Opportunity haya tardado tanto en superar la distancia recorrida por el Lunojod 2 de la extinta Unión Soviética?

La respuesta la debemos hallar en las diferentes condiciones de las dos misiones espaciales. Los Lunojods eran conducidos en tiempo real desde la Tierra por una tripulación de cinco personas. Es decir, lo que hoy en día llamaríamos ‘telepresencia’. Sin embargo, el retraso en las comunicaciones debido a la distancia que nos separa de Marte hace que sea imposible controlar un vehículo marciano en tiempo real (el retraso puede alcanzar los 40 minutos). Además, los rovers no están en contacto permanente con la Tierra y hay que aprovechar las sesiones de comunicación al máximo (normalmente hay unas dos sesiones usando las sondas Mars Odyssey y MRO). Sólo hace falta echar un vistazo a las instalaciones de control de ambas misiones para entender la diferencia en la filosofía de ambas misiones:
Actualidad Informática. Diferencia entre conducir un vehículo en la Luna y en Marte, Lunajod 2. Rafael Barzanallana

Actualidad Informática. Diferencia entre conducir un vehículo en la Luna y en Marte, Opportunity. Rafael Barzanallana

Para ‘conducir’ los rovers marcianos el equipo de tierra planifica una ruta detallada a partir de las imágenes de las cámaras de navegación y panorámicas, normalmente uno o dos días antes. Las instrucciones se mandan al rover y este las cumple diligentemente a no ser que su software detecte algún obstáculo no previsto, en cuyo caso el vehículo se detiene a la espera de nuevas órdenes. Los ordenadores de los rovers marcianos también permiten recorridos ‘automáticos’ de unos cien metros aproximadamente. En estos trayectos el software decide sobre la marcha si es necesario apartarse ligeramente de la ruta programada por los humanos con el fin de evitar rocas, grietas o salientes. Para poder decidir qué acción es la más correcta el rover emplea imágenes de las cámaras de navegación y los datos de las unidades de medida inercial (IMU).

O sea, el ‘conductor’ de Opportunity no dirige el vehículo con un joystick o un volante como si estuviera en un videojuego, sino que usa un ordenador ‘normal y corriente’ para introducir las coordenadas de la trayectoria. La conducción basada en imágenes de Opportunity, denominada ‘odometría visual’, tiene sus limitaciones. El procesador RAD6000 del rover funciona a 200 MHz y necesita unos tres minutos para procesar las imágenes tras recorrer 60 centímetros. Si además el rover se desplaza automáticamente (AutoNav) el tiempo de ejecución se dispara porque el ordenador debe decidir la ruta por sí solo. En AutoNav el rover debe gastar tres minutos de procesado cada 50-150 cm recorridos dependiendo del terreno.

Artículo completo en: El blog de Daniel Marín

 

Matemáticos analizan nuevo dispositivo informático ‘la memoria racetrack’

Actualidad Informática. Matemáticos analizan nuevo dispositivo informático 'la memoria racetrack' . Rafael Barzanallana

La competición para crear el portátil más pequeño, más ligero y más barato del mercado está motivando la búsqueda permanente de un mejor dispositivo de memoria, frente a la tecnología actual, 2D, de los discos duros. Matemáticos de la Universidad de Bristol han estado analizando la posibilidad de una iniciativa de este tipo: el dispositivo de memoria racetrack, propuesto por investigadores de IBM.

En este dispositivo de memoria 3D, los bits de información se almacenan en columnas muy delgadas de nanocables magnetizados. El espesor de estos cables – cerca de 1000 veces más pequeños que un cabello humano – tiene propiedades especiales que significan que el magnetismo a lo largo del cable sólo puede apuntar en dos sentidos: hacia arriba o hacia abajo.

Cada nanocable se divide en varios dominios donde el magnetismo señala ya sea hacia arriba o hacia abajo y cada bit de información se almacena en cada dominio. Puesto que la estructura es tan pequeña, un gran número de bits se puede almacenar en un espacio muy pequeño. Además, los nanocables se pueden mantener en una matriz 3D, que es mucho más pequeña y más rentable que los discos duros.

Pero, ¿cómo son estos fragmentos de información que se pueden ‘leer’ y ‘escribir’? La respuesta está en el divisor entre cada dominio: la pared de dominio. Cuando pulsos de corriente de nanosegundos se envían a través del nanocable, interactúan con la pared de dominio, haciendo que se puede desplazar a lo largo. Como a lo largo del dominio las paredes se propagan a velocidad constante, cada bit de información puede ser leído o escrito en un tiempo proporcional a la velocidad de las paredes de dominio.

¿Será factible este fenómeno en la práctica? La investigación reciente por el Dr. Ross Lund de la Facultad de Matemáticas de Bristol, que investigó la estabilidad de dichas paredes de dominio cuando se aplicaron diferentes intensidades de corriente, sugiere que será posible a menos que se aplique una corriente excesiva.

El Dr Lund dijo: “Sabemos que cuando la corriente excede un nivel umbral, las paredes de dominio, dejan de desplazarse a una velocidad constante fiable, pero qué pasa con las paredes de dominio una vez se aplique demasiada corriente, no se entendía bien – hasta ahora.”

Utilizando una técnica matemática llamada expansiones asintóticas, el Dr. Lund ha sido capaz de explicar la dinámica de las paredes de dominio. Una vez que la corriente excede el valor umbral de las paredes de dominio ya no se desplazan a una velocidad uniforme, sino que se comportan de una forma matemática hermosa pero inestable, por lo que es imposible que cualquier ‘bit’ de información se pueda leer o escribir.

El trabajo del Dr. Lund demuestra las paredes de dominio, en promedio, todavía se propagan a lo largo del nanocable pero con oscilatoria adicional y características rotacionales. Las paredes de dominio se traducen hacia adelante en una oscilación ponderada del lado derecho, similar a la noción de “dos pasos adelante, un paso atrás’.

Además, los vectores de magnetización del ‘arriba o hacia abajo en el nanocable’ comienzan a girara su alrededor. Este comportamiento inestable hace que sea imposible de leer o escribir la información con precisión. Así como una unidad de disco duro se convierte efectivamente en inútil si un potencial excesivo se aplica a través del cable.

Comprender el proceso del dispositivo de memoria racetrack totalmente en términos matemáticos proporciona una explicación completa del proceso complicado que pasa cerca del umbral de potencial. Este análisis es fundamental para obtener un dispositivo de este tipo más rápido y fiable, y debe ayudar a desarrollar aún más este nuevo dispositivo alternativo del disco duro.

Ampliar  en:
‘Domain wall motion in magnetic nanowires: an asymptotic approach’ by A. Goussev, R. Lund, J. Robbins, V. Slastikov and C. Sonnenberg in Proceedings of the Royal Society A. rspa.royalsocietypublishing.or… 9/2160/20130308.full

El Big Bang. ¿Es evidencia de Dios ?

IBM investigará en el desarrollo de computación cuántica y cerebros sintéticos

Actualidad Informática. IBM. Rafael Barzanallana

Nuevas investigaciones, así como nuevos proyectos e inversiones de IBM podrían llevar el futuro en dirección de lo que en muchas ocasiones parece tecnología de ciencia ficción como ordenadores que imitan el cerebro humano o la tan famosa computación cuántica.

IBM invertirá 3000 millones de dólares para investigación y desarrollo de estas tecnologías se concentran en dos grandes campos: desarrollo de componentes nanotecnológicos para los chips de silicio para grandes volúmenes de datos y sistemas de nubes, y la experimentación con microchips “post-silicio”. Supratik Guha de IBM señala que los microprocesadores y la escalada en innovación en este sentido está llegando a su fin y que es importante ponerse en marcha para este nueva tecnología.

En cuanto a la otra gran área de inversión, IBM ha estado investigando la viabilidad de la tecnología de la construcción que puede imitar la cognición humana desde hace años. IBM ha estado en la búsqueda de un nuevo lenguaje de programación que se utilizará para el aprendizaje de las máquinas y sistemas de computación cognitiva como Watson, que podemos ver en el siguiente vídeo a prueba:

Infografía sobre el plasma, cuarto estado de la materia

Actualidad Informática. Infografía sobre el plasma, cuarto estado de la materia. Rafael Barzanallana

El plasma, ese otro estado de la materia (el cuarto dicen) que, según sabemos, resulta ser el más abundante del Universo. Todos desde pequeños aprendimos aquellos tres estados de la materia: “sólido, líquido y gaseoso”. El Plasma, es un estado que, en realidad, cubre el 99% de la materia en nuestro Universo (hablamos de la materia conocida, esa que llamamos bariónica y está formada por átomos por Quarks y Leptones).

Según la energía de sus partículas, los plasmas constituyen el cuarto estado de agregación de la materia, tras los sólidos, liquidos y gases. Parqa cambiar de uno al otro, es necesario que se le aporte energía que aumente la temperatura. Si aumentamos de manera conasiderable la temperatura de un gas, sus átomos o moléculas adquieren energía suficiente para ionizarse al chocar entre sí. de modo que a unos 20000 K muchos gases presentan una ionización elevada. Sin embargo, átomos y moléculas pueden ionizarse también por impacto electrónico, absorción de fotones, reacciones químicas o nucleares y otros procesos.

El Mundial de fútbol y la causalidad

Fuente: El profe de Física

 

Related Posts with Thumbnails

Calendario

August 2014
M T W T F S S
« Jul    
 123
45678910
11121314151617
18192021222324
25262728293031

Spam

Otros enlaces

  • Enlaces

    Este blog no tiene ninguna relación con ellos, ni los recomienda.


  • Paperblog

    autobus las palmas aeropuerto cetona de frambuesa