admin

Categorías

Coobis

Cuántica

Puerta lógica cuántica que combina luz y un átomo

Actualidad Informática. Puerta lógica cuántica que combina luz y un átomo. Rafael Barzanallana

Científicos del Max -Planck de Óptica Cuántica (MPQ) han logrado con éxito una puerta lógica cuántica usando tan sólo un fotón y un solo átomo.

En el experimento, descrito en un estudio en Nature, los estados binarios 0 y 1 son representados por los dos orientaciones del espín de un átomo (arriba o abajo), y por los dos estados de polarización de un fotón óptico (circular izquierda o derecha), respectivamente.

El átomo está atrapado dentro de una cavidad formada por dos espejos. Las propiedades de esta cavidad se eligen de tal manera que el átomo y la cavidad formen un sistema fuertemente acoplado. Los cuantos de luz se preparan como pulsos láser débiles que contienen menos de un fotón de promedio.

El sistema híbrido átomo-fotón puede actuar como una puerta lógica clásica, lo que podría ser un gran paso hacia un ordenador cuántico universal.

«La comunicación cuántica, utilizando fotones al vuelo, y el procesamiento de datos con átomos o iones, han sido considerados como campos de investigación separados hasta el momento», señala el prof. Gerhard Rempe, Director en MPQ y jefe de la División de Dinámica Cuántica. «En nuestro experimento fusionamos ambas técnicas. En particular, nuestra puerta cuántica podría implementarse fácilmente en una red en la que los átomos sirven como nodos estacionarios para el almacenamiento de información, mientras que los fotones transmiten la información entre dichos nodos, incluso a grandes distancias. De esta manera esperamos contribuir a la realización de una computadora cuántica escalable.»

– Publicación: Andreas Reiserer, Norbert Kalb, Gerhard Rempe, Stephan Ritter, A quantum gate between a flying optical photon and a single trapped atom, Nature, 2014, DOI: 10.1038/nature13177 .

Fuente: Bitnavegantes

 

 

Criptografía cuántica para teléfonos móviles

Actualidad Informática. Criptografía cuántica para teléfonos móviles. Rafael BarzanallanaLas comunicaciones móviles seguras sustentan nuestra sociedad y a través de los teléfonos móviles , tabletas y ordenadores portátiles  se han convertido en consumidores en línea. La seguridad de las transacciones móviles es oscura para la mayoría de la gente, pero es absolutamente esencial si vamos a estar protegido contra ataques maliciosos en línea , el fraude y el robo.

Actualmente está disponible la tecnología de criptografía cuántica, pero  es voluminosa  costosa y limitada a ubicaciones físicas fijas – a menudo las salas de servidores en un banco. El equipo de investigadores de Bristol ha mostrado cómo es posible reducir estos recursos voluminosos y costosos para que un cliente sólo requiera la integración de un chip óptico en un teléfono móvil.

El esquema se basa en el protocolo avanzado desarrollado por el investigador Dr. Anthony Laing y sus colegas, que permite el intercambio robusto de la información cuántica a través de un entorno inestable. La investigación se publica en el último número de la revista Physical Review Letters .

El Dr. Anthony Laing dijo: Con mucha atención se centró en la actualidad sobre la privacidad y seguridad de la información, la gente está buscando  la criptografía cuántica como una solución ya que su seguridad está garantizada por las leyes de la física. Nuestro trabajo demuestra que la criptografía cuántica no tiene por qué limitarse a grandes. corporaciones , podría ponerse a disposición de los miembros del público en general. el siguiente paso es tomar nuestro esquema del laboratorio e implementarlo en una red de comunicación real » .

El sistema utiliza los fotones – partículas individuales de luz – como el portador de la información y el esquema se basa en los circuitos cuánticos integrados desarrollados en la Universidad de Bristol. Estos diminutos microchips son cruciales para la adopción generalizada de las tecnologías de la comunicación cuántica seguras y anuncian un nuevo amanecer para la banca móvil segura, el comercio en línea, y el intercambio de información y en breve podrían dar lugar a la producción del primer teléfono móvil  a prueba de la NSA .

Universidad de Bristol

Fuente: Reference frame independent quantum key distribution server with telecom tether for on-chip client
P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, J. L. O’Brien, Physical Review Letters, 2 April 2014.

Nueva posibilidad en la física cuántica con la superconductividad en LED

Actualidad Informática. Nueva ventana en la física cuántica con la superconductividad en LED. Rafael Barzanallana

Un equipo de físicos de la Universidad de Toronto (Canadá) liderados por Alex Hayat ha propuesto una forma novedosa y eficiente para aprovechar el fenómeno de la física cuántica  conocido como entrelazamiento. El enfoque implicaría la combinación de diodos emisores de luz (LED) con un superconductor para generar fotones entrelazados y podría abrir un rico espectro de una nueva física , así como dispositivos de tecnologías cuánticas, incluidos los ordenadores cuánticos y la comunicación cuántica. El entrelazamiento se produce cuando las partículas se convierten en pares correlacionados para interactuar previsiblemente entre sí , independientemente de lo lejos que están. Mida las propiedades de uno de los miembros del par entrelazado y al instante conocer las propiedades de la otra. Es uno de los aspectos más desconcertantes de la mecánica cuántica, lo que lleva a Einstein a llamarlo » acción fantasmal a distancia».

«Una fuente de luz habitual tal como un LED emite fotones al azar sin ningún tipo de correlaciones», explica Hayat, quien también es Académico en el Instituto Canadiense de Investigaciones Avanzadas. » Hemos demostrado que la generación de entrelazamiento entre los fotones emitidos desde un LED se puede lograr mediante la adición de otro efecto físico peculiar, la superconductividad – una corriente eléctrica sin resistencia en ciertos materiales a bajas temperaturas «.

Este efecto se produce cuando los electrones se enlazan en pares de Cooper. Cuando una capa de dicho material superconductor se coloca en estrecho contacto con una estructura de LED de semiconductores, los pares de Cooper se inyectan en el LED, de modo que los pares de electrones entrelazados crean pares de fotones entrelazados. El efecto, sin embargo, resulta que sólo funciona en LEDs que utilizan regiones activas de nanómetros de espesor – pozos cuánticos.

«Por lo general las propiedades cuánticas aparecen en escalas muy pequeñas – un electrón o un átomo de superconductividad permite que los efectos cuánticos aparezcan en grandes escalas, un componente eléctrico o  todo un circuito. Este comportamiento cuántico puede mejorar significativamente la emisión de luz en general, y la emisión de fotones entrelazados en particular», dijo Hayat.

Fuente: University of Toronto


armarios lacados
guardamuebles las palmas
Incineracio animals Barcelona

Tecnologías para la computación cuántica

Actualidad Informática. Tecnologías para la computación cuántica. Rafael Barzanallana

Hay hasta 18 tecnologías que están siendo investigados para la computación cuántica. Cada una tiene sus ventajas y limitaciones. El grupo de Blatt está trabajando en un qubit basado en una transición óptica de iones atrapados de calcio 40.

Los qubits de iones atrapados «tienen propiedades de coherencia exquisitas, se pueden preparar y medir con eficiencia cercana al 100 %, y se entrelazan fácilmente unos con otros a través de la interacción de Coulomb o interconexiones fotónicas remotas», escribe Chris Monroe del Joint Quantum Institute en Science. Su grupo está utilizando iones de iterbio, otros  investigadores están estudiando otros iones atrapados. Tanto los grupos de Innsbruck y JQI han escalado experimentos para 15 o 16 qubits, a medio camino de los 30 qubits que Monroe dice que se necesitan para simular el comportamiento de un sistema mecánico-cuántico que son demasiado complejos para las computadoras digitales actuales.

Otros tipos de qubits pueden ser mejores para otros tipos de operaciones, dice Klaus Ensslin del Instituto Federal Suizo de Tecnología ( ETH, Zurich, Suiza). Investigadores suizos están estudiando muchos tipos de qubits para aplicaciones potenciales. Una preocupación es el corto tiempo de vida de los estados cuánticos con respecto al mundo exterior. » Para hacer funcionar un ordenador cuántico, se debe aislar el sistema cuántico de su entorno, pero también hay que leerlo», dice Ensslin. El espín de un solo electrón en un punto cuántico es atractivo porque se acopla débilmente a su entorno. Los qubits de puntos cuánticos son difíciles de manipular, pero dice que su gran atractivo es la posible facilidad de escalado en nanoestructuras semiconductoras. Otros están estudiando enfoques donde la protección es topológica –  ingeniería cuántica para mejorar la coherencia y reducir el ruido.

Otros tipos de tecnología de la computación cuántica son:

• Los átomos neutros y moléculas con estados internos de larga duración, se enfrían, atrapan y entrelazan para crear qubits.
• Circuitos de unión Josephson superconductoras.
• Medición óptica de los estados cuánticos de los fotones.
• Efectos de resonancia magnética nuclear

Animación que explica la mecánica cuántica

La ciencia nos abre los ojos, pero no tiene que ver con que dios exista o deje de existir

Actualidad Informática. Ignacio Cirac. Rafael BarzanallanaEl físico Juan Ignacio Cirac (Manresa, 1965) forma parte de esa brillante saga de científicos empeñados en completar el guion del universo. Su problema es que en esta ambiciosa superproducción cuántica, a diferencia de otras ciencias que tratan de abrir camino hacia el futuro, el tiempo de la historia deviene hacia el pasado más remoto. Como Christopher Nolan en la película Memento, los físicos están reconstruyendo a ciegas un argumento que en este caso dura trece mil millones de años. Y nadie está seguro de que se pueda llegar a conocer el principio de la mayor historia jamás contada, el Big Bangel punto exacto en que la física cuántica más sólida se torna volátil metafísica, la pregunta ante la cual el ser humano se encoge todavía de hombros, el lugar donde habita el olvido que cantan los poetas.

Lo expresaba muy bien Max Planck, el científico alemán que da nombre al instituto tecnológico cuya división teórica dirige Cirac desde 2001. «La ciencia es incapaz de resolver los últimos misterios de la naturaleza, porque en el último análisis nosotros mismos somos parte de la naturaleza, es decir, del misterio que tratamos de resolver». A la espera de las sorpresas que pueda deparar el estudio de la materia oscura, la gran desconocida en la ecuación del universo, el hallazgo del bosón de Higgs representa, hasta la fecha, el mayor acercamiento a la comprensión del origen de todo.

No obstante, la física cuántica se ocupa también de asuntos terrenales. Uno de ellos la computación cuántica, disciplina en la que Juan Ignacio Cirac ha destacado en las últimas dos décadas hasta el punto de postularse como ganador del Nobel de Física, sobre todo después de haber obtenido este año el premio Wolf, antesala de los premios de la academia sueca.

Desde que el español demostró la posibilidad teórica de construir ordenadores cuánticos, en el mundo se ha iniciado uno de los procesos de transferencia tecnológica más relevantes de nuestro tiempo, el camino hacia la segunda revolución cuántica de la historia, una carrera donde está en juego el dominio de las comunicaciones y la industria informática del futuro. El científico acaba de visitar Madrid para participar como jurado, en la categoría de ciencias básicas, en los premios Fronteras del Conocimiento, de la Fundación BBVA, y esta vez concede a Teknautas su única entrevista en España antes de regresar a Alemania.

P.: Muchos científicos prestigiosos, desde Einstein a Max Planck, han recurrido a símiles donde aparece Dios para explicar los límites de la ciencia. ¿Tiene la física, en último extremo, algo de místico?

R.: La ciencia no tiene nada que ver con lo místico, son dos cosas completamente separadas. Otra cosa distinta es que algunas religiones tienen ideas equivocadas bajo los ojos de la ciencia, y entonces la ciencia lo dice. Por ejemplo, hace trescientos años se pensaba que la Tierra, el universo incluso, tenía seis mil años. Hoy sabemos que tiene muchos más: trece mil millones. La ciencia nos va abriendo los ojos, pero eso no quiere decir ni que exista Dios ni que deje de existir, ni que sea de una manera o de otra.

Entrevista completa en:  Teknautas

cocinas las palmas
crematorio animales
reformas integrales zaragoza
servicios de tutorias
viajes a india y nepal

La Mecánica Cuántica y sus aplicaciones: el ordenador cuántico

Interesante documental que explica de forma sencilla y resumida cómo surgió la Física Cuántica y cómo a partir de ésta se desarrolló la Mecánica Cuántica. Sin necesidad de recurrir a las matemáticas propias del formalismo cuántico, se explican puntos clave como el concepto de dualidad onda-corpúsculo, la superposición de estados cuánticos (ilustrada mediante el famoso experimento pensado del gato de Schrödinger), el concepto de entrelazamiento o «entanglement», la paradoja EPR (Einstein-Podolsky-Rosen) y el experimento de Alain Aspect. La parte final del documental se centra en la computación cuántica, presentando el concepto de qbit (quantum bit o bit cuántico) y dando una idea de la revolución que supondría la construcción del ordenador cuántico en el ámbito de la encriptación.

Un solo átomo, la memoria más pequeña

Actualidad Informática. Memoria de un solo átomo. Rafael Barzanallana. UMU

Un átomo es igual a un bit: de acuerdo con este principio de diseño, sería posible  construir memorias de datos magnéticos en el futuro. Actualmente, se necesita un compuesto de varios millones de átomos para estabilizar un bit magnético de manera que los datos del disco duro permanezcan seguros durante varios años. Sin embargo, los investigadores apenas han dado un gran paso hacia un único átomo como bit, se ha fijado un solo átomo sobre una superficie de tal forma que el espín magnético se mantuvo estable durante diez minutos. El artículo aparece en la  revista Nature (DOI 10.1038/nature12759).

«A menudo, un solo átomo fijado a un sustrato es tan sensible que su orientación magnética es estable solo durante fracciones de un microsegundo (200 nanosegundos),»  según explica Wulf Wulfhekel del Instituto de Tecnología de Karlsruhe (KIT) . Junto con colegas de Halle, han logrado extender este período por un factor de alrededor de mil millones, hasta varios minutos. «Esto no sólo abre la posibilidad de diseñar memorias de ordenadores más compactas, sino que  también podría ser la base para la configuración de los ordenadores cuánticos», dice Wulfhekel. Los ordenadores cuánticos están basados en  propiedades físicas cuánticas de los sistemas atómicos. Al menos en teoría, su velocidad puede ser superior a la de los ordenadores clásicos por varios factores.

En su experimento, los investigadores colocaron un solo átomo de holmio sobre un substrato de platino. A temperaturas cercanas al cero absoluto, es decir, alrededor de un Kelvin, se mide la orientación magnética de los átomos con la fina punta de un microscopio de efecto túnel. El espín magnético cambió después de sólo unos 10 minutos. «Por lo tanto, el espín magnético del sistema es estable durante un período que es aproximadamente mil millones de veces más largo que el de los sistemas atómicos comparables,» hace hincapié  Wulfhekel. Para el experimento, se aplicó un análisis novedoso del microscopio de efecto túnel. Gracias a su sistema de refrigeración especial para el rango de temperaturas cercanas al cero absoluto,  está casi libre de vibraciones y permite largos tiempos de medida.

«Para estabilizar el momento magnético por períodos más largos de tiempo, se suprimió el impacto del entorno en el átomo,» indica Arthur Ernst, del Instituto Max Planck de Física de la microestructura. Realizó los cálculos teóricos para el experimento. Normalmente, los electrones del sustrato y del átomo interactúan cuánticamente y desestabilizan el espín del átomo en microsegundos o incluso más rápidamente. Cuando se utiliza holmio y platino a bajas temperaturas, las interacciones perturbadoras se excluyen debido a las propiedades de simetría del sistema cuántico. «En principio, holmio y  platino son invisibles el uno al otro en la medida que se refiere a la dispersión del espín,» dice Ernst. Ahora, el espín del  holmio podría ajustarse y la información puede ser escrita por medio de campos magnéticos externos. Este sería el requisito previo para el desarrollo de memorias de datos compactas u ordenadores cuánticos.

 Karlsruhe Institute of Technology (KIT) es una corporación pública de acuerdo con la legislación del estado de Baden-Württemberg (Alemania). Cumple con la misión de una universidad y la misión de un centro de investigación nacional de la Asociación Helmholtz. Las actividades de investigación se centran en la energía, el medio ambiente natural y construido, así como en la sociedad y la tecnología y cubren todo el rango que va desde los aspectos fundamentales de la aplicación. Con cerca de 9000 empleados, incluyendo cerca de 6000 miembros del personal en el sector de la ciencia y la educación, y 24000 estudiantes, KIT es una de las instituciones de educación más grande de  investigación de  Europa. La obra de KIT se basa en el triángulo del conocimiento de la investigación, la docencia y la innovación.

Este comunicado de prensa está disponible en http://www.kit.edu .

Nuevo récord de almacenamiento de un cubit de estado sólido

Actualidad Informática. Nuevo récord de almacenamiento de un cubit de estado sólido. Rafael Barzanallana. UMU

La memorias cuánticas para cubits de larga duración suelen trabajar a temperaturas criogénicas. Se publica en Science una memoria cuántica de estado sólido que almacena un cubit durante más de 3 horas a una temperatura de 1,2 K (el anterior récord era de 3 minutos a 4,2 K). Lo más sorprendente es que además supera los 39 minutos a temperatura ambiente (298 K); el anterior récord, utilizando un cubit implementado en diamante, era de 2 segundos. Se ha utilizado silicio (28Si) dopado con fósforo (31P) como donor y con boro (B) como aceptor. El artículo técnico es Kamyar Saeedi et al., “Room-Temperature Quantum Bit Storage Exceeding 39 Minutes Using Ionized Donors in Silicon-28,” Science 342: 830-833, 15 Nov 2013. Nos lo cuenta Gabriel Popkin, “Quantum information storage that lasts and lasts,” Science News, 14 Nov 2013.

Ampliar en:  La Ciencia de la Mula Francis

Detección cuántica no destructiva de un solo fotón

Actualidad Informática. Detección cuántica no destructiva de un solo fotón. Rafael Barzanallana. UMU

Albert Einstein recibió el Premio Nobel por explicar el efecto fotoeléctrico como un proceso de absorción y aniquilación de fotones. Todo detector de un solo fotón aniquila dicho fotón impidiendo medidas repetidas del mismo fotón. Parece imposible diseñar un detector no destructivo de fotones, sin embargo, Andreas Reiserer (Instituto Max Planck de Óptica Cuántica, Garching, Alemania) y dos colegas han logrado lo imposible gracias a acoplar el estado del fotón con un átomo de rubidio-87 atrapado en una cavidad óptica y medir dicho átomo para deducir la presencia del fotón o su ausencia mediante fluorescencia. El nuevo método tiene una eficiencia del 74%, que se puede incrementar utilizando medidas repetidas en sucesión sobre el mismo fotón (dos medidas subirían la eficiencia al 87% y tres medidas hasta el 89%). Se esperan muchas aplicaciones en metrología cuántica, computación cuántica, comunicación cuántica e incluso en la futura web cuántica. El artículo técnico es Andreas Reiserer, Stephan Ritter, Gerhard Rempe, “Nondestructive Detection of an Optical Photon,” Science, AOP 14 Nov 2013 (arXiv:1311.3625 [quant-ph]).

Ampliar en: La Ciencia de la Mula Francis

Related Posts with Thumbnails

Calendario

abril 2024
L M X J V S D
« Nov    
1234567
891011121314
15161718192021
22232425262728
2930  

Spam

Otros enlaces

  • Enlaces

    Este blog no tiene ninguna relación con ellos, ni los recomienda.


  • Paperblog

    autobus las palmas aeropuerto cetona de frambuesa