admin
EnglishFrenchGermanItalianPortugueseRussianSpanish

Categorías

Coobis

biodegradable

Fraunhofer investigará la electrónica biodegradable para implantes activos

BioelectrónicaUn año después de iniciar este proyecto, los socios investigadores Fraunhofer Institute for Electronic Nano Systems ENAS, el Fraunhofer Institute for Biomedical Engineering IBMT, el Fraunhofer Institute for Silicate Research ISC, y el Fraunhofer Resource Recycling and Strategy Project Group IWKS y Fraunhofer FEP presentarán sus primeros resultados durante el Semicon Europe 2017 como parte de productronica 2017 en Munich.

Los componentes electrónicos que se pueden descomponer por completo en un entorno biológico después de una vida útil predefinida abren nuevas posibilidades de aplicación, así como formas de reducir su huella ecológica. Para ello, Fraunhofer FEP ha desarrollado tecnologías de vacío para la fabricación de materiales conductores biodegradables en sustratos biodegradables. Los implantes médicos activos construidos con componentes biodegradables podrían ser reabsorbidos por el tejido, ahorrando al paciente una segunda intervención quirúrgica para la extracción del implante después de su vida útil.

La Fraunhofer Gesellschaft e. V. está financiando el proyecto «BioElektron – Biodegradable Electronics for Active Implants» a través de su programa interno (financiamiento No. MAVO B31 301).

Este proyecto se centrará en el desarrollo de componentes esenciales para las piezas electrónicas biodegradables que se emplearán, por ejemplo, en un implante. Entre ellas se incluyen las estructuras conductoras biodegradables, los electrodos biodegradables para recoger señales eléctricas o suministrar estimulación eléctrica (por ejemplo, para la monitorización cerebral), los transistores y circuitos biodegradables de película delgada y todas sus capas asociadas de aislamiento eléctrico y de protección contra la humedad y los gases. Todos estos elementos deben integrarse monolíticamente en un dispositivo flexible de película delgada.

El magnesio es conocido por ser un metal biodegradable y biológicamente compatible y ya se emplea en entornos clínicos como material de implante absorbible. Basándose en los procesos de evaporación y deposición térmica al vacío, Fraunhofer FEP desarrolla estructuras conductoras y transistores orgánicos de capa fina a base de magnesio. El reto consiste en depositar este metal sobre láminas poliméricas biodegradables que el magnesio no se adhiere lo suficiente al control normal del proceso. Mediante un pretratamiento adecuado de los sustratos mediante una combinación de secado, tratamiento con plasma y capas de semillas se pueden producir estructuras conductoras de alta calidad y finamente estructuradas.

«Ahora estamos preparados para discutir estos resultados con socios interesados de la industria y la comunidad científica durante la productronica 2017 en el stand conjunto Silicon-Sajonia (pabellón B1, stand B1-416) con el fin de poder aplicarlos en las aplicaciones prácticas actuales», explica el Dr. Michael Hoffmann de Fraunhofer FEP y director del proyecto bioElektron.

Fuente: www.fep.fraunhofer.de/en/ueber-uns/projekte/bioElektron.html

Ampliar en:

Transistores biodegradables

Actualidad Informática. Electronica basada en productos biológicos como sangre, leche y mocos. Rafael BarzanallanaGanadora de un premio de investigación, la Universidad de Tel Aviv (Israel) utiliza automontaje de sangre,  leche y  proteínas del moco para construir la próxima generación de tecnología

El silicio, un elemento semiconductor, es la base de la más moderna tecnología, incluyendo teléfonos móviles celulares y ordenadores. Sin embargo, según investigadores de la Universidad de Tel Aviv, este material se está convirtiendo rápidamente en una industria obsoleta, pues la tendencia es hacia la producción de componentes cada vez más pequeños y que sean menos perjudiciales para el medio ambiente.

Un equipo que incluye a los estudiantes de doctorado Elad Mentovich y Hendler Netta del Departamento de Química de la UTA y el Centro de Nanociencia y Nanotecnología, con el supervisor el Dr. Richter Shachar y en colaboración con el Prof. Michael Gozin y su  estudiante de doctorado Bogdan Belgorodsky, ha reunido las técnicas más avanzadas de múltiples campos de la ciencia para crear transistores basados en proteínas,  semiconductores utilizados para alimentar dispositivos electrónicos, desde los materiales orgánicos que se encuentran en el cuerpo humano. Podrían convertirse en la base de una nueva generación del tamaño de las nanotecnologías, que sean flexibles y biodegradables.

Trabajan con las proteínas de la sangre, leche, y el moco, que tienen la capacidad de autoensamblarse para formar una película semiconductora, los investigadores ya han logrado dar el primer paso hacia las pantallas biodegradables, y su objetivo es utilizar este método para desarrollar todos los dispositivos de la electrónica. Su investigación, que ha aparecido en la revista Nano Letters and Advanced Materials, recibió recientemente la medalla de plata en los Materials Research Society Graduate Student Awards en Boston, MA.

Construyendo el mejor transistor de abajo hacia arriba

Uno de los retos de la utilización de silicio como semiconductor es que un transistor se debe crear mediante un «arriba hacia abajo». El fabricante ha de empezar con una oblea de silicio y esculpir la forma que se necesita, como tallar una escultura a partir de una roca. Este método limita las capacidades de los transistores cuando se trata de factores tales como el tamaño y flexibilidad.

Los investigadores se volvieron hacia la biología y la química, con un enfoque diferente para la construcción del transistor ideal. Cuando apilaban varias combinaciones de sangre, leche y proteínas mucosas a cualquier material de base, las moléculas se autoensamblaban para crear una película semiconductora a  nanoescala. En el caso de proteína de la sangre, por ejemplo, la película es aproximadamente de cuatro nanómetros alta. La tecnología actual en uso ahora es de 18 nanómetros, dice Mentovich.

Juntos, los tres tipos diferentes de proteínas crenr un circuito completo con capacidades electrónicas y ópticas, cada uno trayendo algo único al dispositivo. La proteína de la sangre tiene la capacidad para absorber oxígeno, Mentovich dice, que permite el «dopaje» de semiconductores con productos químicos específicos a fin de crear propiedades tecnológicas específicas. Las proteínas de la leche, conocidas por su fortaleza en entornos difíciles, forman las fibras, que son los componentes básicos de los transistores, mientras que las proteínas de la mucosa tiene la capacidad de mantener de color rojo, verde y azul por separado tintes fluorescentes, así como la creación de la emisión de luz blanca que es necesaria para la óptica avanzada.

En general, las habilidades naturales de cada proteína dan a los investigadores «control único» sobre el transistor orgánico resultante, lo que permite ajustes para la conductividad, el almacenamiento de  memoria, y la fluorescencia entre otras características.

Una nueva era de la tecnología

La tecnología está ahora cambiando de una época de silicio a una época de carbono, según  Mentovich, y este nuevo tipo de transistor podría desempeñar un papel importante. Los transistores construidos a partir de estas proteínas son ideales para los circuitos más pequeños y flexibles, que están hechos de plástico en lugar de silicio, que existe en forma de oblea que se rompen como el cristal  si se doblan. El descubrimiento podría conducir a una nueva gama de tecnologías flexibles, como pantallas, teléfonos celulares, tabletas, biosensores, y hips de microprocesadores.

Tan significativo es, que debido a que los investigadores están utilizando proteínas naturales para construir su transistor, los productos que crean serán biodegradables. Es una tecnología mucho más respetuosa  con el medio ambiente que aborda el creciente problema de la basura electrónica, que desborda los vertederos de todo el mundo.

Fuente: EurekAlert!

Related Posts with Thumbnails

Calendario

agosto 2019
L M X J V S D
« Nov    
 1234
567891011
12131415161718
19202122232425
262728293031  

Lo más visto

  • Infografía: espectro electromagnético y sus aplicaciones - 12.205 views
  • Las ecuaciones de la física en la vida cotidiana - 9.136 views
  • Evolución del logo de Windows - 7.934 views
  • Versiones de éxito y fracaso de Windows - 7.220 views
  • Transistor óptico - 7.174 views
  • Evolución de los microprocesadores Intel - 6.942 views
  • El método científico, ejemplo con plantas - 6.823 views
  • Cómo pueden las ondas de radio atravesar las paredes - 6.617 views
  • Historia gráfica del universo desde el Big Bang - 6.597 views
  • Comparación humorística de navegadores de internet - 6.451 views

Spam

Otros enlaces

  • Enlaces

    Este blog no tiene ninguna relación con ellos, ni los recomienda.


  • Paperblog

    autobus las palmas aeropuerto cetona de frambuesa